宜昌市72份野生中华猕猴桃果实性状多样性分析与综合评价

胡光明1,2,黎纯斌3,杨 斌3,王周倩1,申素云1,4,李作洲1*,钟彩虹1*

1中国科学院武汉植物园,武汉 430074;2中国科学院大学,北京 100049;3宜昌市种子监督站,湖北宜昌 443005;4三峡大学生物与制药学院,湖北宜昌 443002)

摘 要:【目的】猕猴桃具有很高的营养价值和经济价值,随着产业的发展,开发具有区域适应性的地方品种尤为重要。通过对湖北省宜昌市野生猕猴桃果实表型性状多样性研究,为地方优良资源挖掘及新品种选育提供基础。【方法】以从湖北省宜昌市收集的72 份野生中华猕猴桃果实为材料,对单果质量、果实纵径、果实横径、果形指数、可溶性固形物含量、干物质含量以及果实形状、果肉颜色等20个表型性状进行测量或记录,利用统计软件分析其遗传多样性,基于数量性状进行聚类分析和主成分分析,通过种质资源主成分得分进行综合评价,依据排名筛选出优异种质。【结果】72份野生中华猕猴桃种质果实的各个性状均具有丰富的遗传变异。14个质量性状的遗传多样性指数(H’)变幅为0.25(果心颜色)~1.36(果实形状)之间,变异系数(coefficient of variation,CV)介于11.79%(果心颜色)~71.15%(果实形状)之间;6个数量性状的遗传多样性指数变幅为1.84(单果质量)~2.02(果形指数),变异系数介于14.68%(果实横径)~42.22%(单果质量)之间。聚类分析在欧式距离为15 处将供试种质划分为4 个组,组内具有相似特征,组间具有显著差异。部分数量性状间具有显著的相关性,主成分分析和综合评价结果表明,前3个主成分累积贡献率为94.643%,各种质的综合得分范围为-1.72~2.17。其中,YC36、YC66、YC08、YC07、YC69、YC18、YC67和YC68共8份种质的综合得分大于1,可作为优异野生育种资源加以利用。【结论】宜昌72份野生中华猕猴桃种质资源的果实表型遗传多样性指数高,变异系数大,具有丰富的遗传多样性;筛选出8份综合性状表现优良的种质,为培育地方品种提供了理论基础和材料支撑。

关键词:野生猕猴桃;中华猕猴桃;果实性状;遗传多样性;综合评价

猕猴桃营养丰富,口感香甜,是一种具有重要经济价值的水果,已在世界范围内广泛种植,并且面积与产量逐年增长[1]。在我国,野生猕猴桃种质资源丰富,极大地促进了科研与产业的发展进步。在近40多年中,我国已经培育了150多个猕猴桃新品种,其中红阳、徐香、翠香、东红、贵长、金艳、米良1号和金桃等品种已成为国内主栽品种[2],猕猴桃的种植区域已经辐射超过20个省、自治区、直辖市[3]。不同的品种对区域或环境的适应性不同,如红阳猕猴桃易感溃疡病,尤其是在高海拔地区发病率更高[4-5],故红阳猕猴桃不能满足高寒地区的生产种植要求;陈曦等[6]建立了中华猕猴桃原变种(Actinidia chinensis var.chinensis)和中华猕猴桃美味变种(A. chinensis var.deliciosa)2类猕猴桃的气候品质评价模型,认为影响中华猕猴桃原变种品质的关键气候因子是光照和气温日较差,影响美味猕猴桃品质的关键气象因子是温度、降水量、日照时数、气温日较差和高温日数。猕猴桃在长期的进化过程中,形成了丰富的种间或种内的表型和遗传多样性[7]。受地理环境与微气候的影响,不同产地同类猕猴桃具有各自的区域表现[8-10]。在猕猴桃产业蓬勃发展的今天,避免盲目种植并选择适宜的品种尤为关键。

通过野生资源选优培育优良品种是主要的育种方式之一,在近40 多年中,猕猴桃育种主要以资源发掘为主[11]。开展野生猕猴桃种质资源的调查与遗传多样性分析的工作对于资源保护和新品种选育具有重大意义,尤其为解决特殊地理环境下缺乏特色品种的问题提供了原始条件[12]。我国疆域辽阔,地理环境复杂多变,通过对本地野生资源选优或者遗传改良而得到的品种更适宜当地发展,如米良1 号和贵长分别是从湖南湘西和贵州紫云野生资源中直接选育的优良品种[13],现在已成为2 省的主栽品种[3]。自1978年开展全国猕猴桃种质资源普查工作以来,我国猕猴桃种质资源的主要分布区域及各区域猕猴桃资源类型已经基本被摸清;此后,基于该普查结果,大批优良品种被陆续选育[14]。近年来,对贵州东部[15]、重庆大巴山区[16]、江西五府山[12]、浙江中西部[17]、云南大部分地区[18]和湖北幕阜山区[19]等地又相继开展野生猕猴桃资源的调查或收集工作。这些调查研究均表明,各地野生猕猴桃存在丰富的遗传多样性,蕴含了许多优异种质资源。同时,有许多研究对野生猕猴桃种质资源果实的品质进行了综合分析,进一步明确了其开发利用价值[20-21]

宜昌市位于湖北省西南部,地处长江上游与中游的结合部,鄂西武陵山脉和秦巴山脉向江汉平原的过渡地带,年平均气温为16.9 ℃,年平均降雨量为1 215.6 mm[22]。宜昌市是世界猕猴桃栽培驯化的发源地,具有丰富的野生猕猴桃种质资源,经过实地考察和文献记载,发现此地一共有猕猴桃属下18个分类单元[23],具有得天独厚的资源优势。近年来,宜昌市大力发展猕猴桃产业,但是规划布局不够合理,品种结构有待优化,本土化优良品种的选育进展缓慢[24]。中华猕猴桃原变种和美味变种同属中华猕猴桃(A.chinensis),是目前开发利用最为充分的类群,上述优良品种均属于此类[13]。通过对宜昌市的野生猕猴桃种质资源进行调查,收集到野生中华猕猴桃果实72 份。从同一地区众多相同种类中筛选出果实综合品质优异资源是资源收集的关键。笔者在本研究中通过对野生中华猕猴桃果实表型特征进行统计,开展遗传多样性分析、聚类分析、相关性分析及主成分分析并进行综合评价,选出其中较为优异的种质,为今后的优异资源保存和种质创新提供基础材料。

1 材料和方法

1.1 试验材料

2021 年10—11 月,对湖北省宜昌市夷陵区、长阳土家族自治县、五峰土家族自治县、兴山县、秭归县和远安县等县区境内的野生猕猴桃种质资源开展调查,共采集中华猕猴桃果实72 份(编号为YC01~YC72,图1),将果实带回实验室后存放在常温条件下,对其质量性状和数量性状进行观测,每份种质收集5个果实数据。

图1 72 份野生中华猕猴桃种质资源的果实
Fig.1 Fruits of 72 wild A.chinensis accessions

1.2 果实性状测量与记录

参考中华人民共和国农业行业标准《植物新品种特异性、一致性和稳定性测试指南·猕猴桃属》(NY/T 2351—2013)[25],对果实形状、果肩形状、果顶形状、果喙形状、被毛程度、花萼环、萼片宿存、皮孔突出程度、果实横截面形状、果心横截面形状、果肉颜色、果心颜色、常温贮藏软腐程度以及果肉风味共14个质量性状进行定性描述;用电子天平称量单果质量;用游标卡尺测定果实纵径和横径,以果实纵径与横径比值为果形指数;可溶性固形物含量采用ATAGO PAL.1型手持折光仪测量;通过烘干法测定干物质,在果实中部位置横切约3 mm厚的带皮果实切片,于60 ℃恒温烘箱中烘干24 h 至恒质量,以干质量与鲜质量的百分比为果实干物质含量。

1.3 数据统计与分析

原始数据经Excel 2019 软件进行整理,利用SPSS 26 统计软件进行单因素方差分析、相关性分析、聚类分析和主成分分析[19]。对不同类型的质量性状进行赋值,便于计算变异系数(coefficient of variation,CV)与遗传多样性指数(H’)。变异系数公式:CV=δ/μδ为标准差,μ为平均值),表示某一性状的离散程度[26];参照王铭等[27]的方法计算Shannon’s信息指数作为遗传多样性指数(H’)对果实性状的遗传多样性进行评价。

2 结果与分析

2.1 质量性状遗传多样性

野生中华猕猴桃种质资源的果实质量性状分析结果见表1。14个质量性状在供试的72份种质资源中共检测到47个变异类型,平均每个性状的变异类型为3.36 个,各个性状的变异类型频率分布不相同。遗传多样性指数(H’)变幅为0.25(果心颜色)~1.36(果实形状),平均值为0.87;变异系数(CV)介于11.79%(果心颜色)~71.15%(果实形状)之间,平均值为35.91%。果实形状以短圆形居多(30.56%),其次为圆柱形(29.17%),少数为椭圆形、倒卵形、扁卵形或圆球形等类型;果肩形状主要为圆形(80.56%),少数为斜形(13.89%)和方形(5.56%);果顶多为凸顶(52.78%)或平顶(36.11%),少数为凹顶(11.11%);果喙形状有浅钝凸(52.78)、浅尖凸(29.17%)、深钝凸(13.89%)和深尖凸(4.17%);大部分果实表面被有密集(50.00%)或稀疏(36.11%)的茸毛,少数无或被极稀茸毛(13.89%);花萼环多轻微(48.61%),其次为明显(26.39%),其他为无或极轻(25.00%);无萼片宿存占比56.94%,有萼片宿存占比43.06%;大部分皮孔突出程度中等(54.17%)或强(33.33%),少数为弱(12.50%);果实横截面形状多为圆形(84.72%),少数为椭圆形(15.28%);果心横截面形状多为椭圆形(45.83%),其次为不规则形(27.78%)或圆形(26.39%);果肉颜色多为绿色(75.00%),少数为黄绿色(18.06%)或黄色(6.94%);果心颜色多为黄色(94.44%),极少数为白色(2.78%)或绿色(2.78%);果肉风味多为酸甜(52.78%),其次为甜(22.22%)或酸(19.44%),少数味淡(5.56%);常温贮藏期间,68.06%的不发生或发生轻度软腐,31.94%的发生中度或严重软腐。

表1 72 份野生中华猕猴桃果实质量性状分布频率及多样性
Table 1 Distribution frequency and diversity of fruit qualitative traits in 72 wild A.chinensis accessions

性状Trait果实形状Fruit shape资源数Accession 22 7 21多样性指数H’1.36变异系数CV/%71.15果肩形状Shoulder shape of fruit 321794 0.61 20.78果顶形状Head shape of fruit 0.95 28.23果喙形状Beak shape of fruit 1.10 53.12被毛程度Degree of fruit surface hairiness 0.99 30.20花萼环Calyx ring 1.05 35.59萼片宿存Sepals persistent皮孔突出程度Degree of lenticel protrusion 0.68 34.61赋值与性状描述Assignment and traitr description 1:短圆Short roundish 2:扁卵Oblate ovoid 3:圆柱Cylinder 4:圆球Spherical 5:扁圆Oblate roundish 6:卵Oval 7:倒卵Obvate 8:椭圆Elliptic 1:方Square 2:圆Circlet 3:斜Slant 1:凹Cupped 2:平Flat 3:凸Bulge 1:浅钝凸Shallow,blunt bulge 2:深钝凸Elongate,blunt bulge 3:浅尖凸Shallow,cuspidal bulge 4:深尖凸Elongate,cuspidal bulge 1:无或极少Nothing or little 2:稀疏Sparse 3:密集Dense 1:无或极轻Nothing or little 2:轻微Slight 3:明显Evident 1:无No 2:有Yes 1:弱Weak 2:中Secondary 3:强Distinct 1:圆Circle 2:椭圆Oval 1:圆Circle 2:椭圆Oval 3:不规则Out-of-shape 1:绿Green 2:黄绿Yellowish-green 3:黄Yellow 1:白White 2:黄Yellow 3:绿Green 1:淡Insipid 2:酸Sour 3:酸甜Sweet and sour 4:甜Sweet 1:无或轻Nothing or little 2:中度Slight 3:重度Evident 58 10 8 26 38 38 10 21 3 10 26 36 18 35 19 41 31 9 39 24 61 11 19 33 20 54 13分布频率Distribution frequency/%30.56 9.72 29.17 4.17 2.78 1.39 9.72 12.50 5.56 80.56 13.89 11.11 36.11 52.78 52.78 13.89 29.17 4.17 13.89 36.11 50.00 25.00 48.61 26.39 56.94 43.06 12.50 54.17 33.33 84.72 15.28 26.39 45.83 27.78 75.00 18.06 6.94 2.78 94.44 2.78 5.56 19.44 52.78 22.22 68.06 20.83 11.11 0.96 29.17果实横截面形状Cross section shape of fruit果心横截面形状Cross section shape of fruit center 0.43 31.21 1.07 36.54果肉颜色Flesh color 0.71 45.24果心颜色Flesh center color 5 2 0.25 11.79 68果肉风味Fruit flavor 2 4 1.15 27.26常温贮藏软腐程度Degree of soft rot stored at room temperture平均Mean 14 38 16 49 15 8 0.83 47.79 0.87 30.91

2.2 数量性状遗传多样性

对供试材料的6 个数量性状进行统计学分析,结果见表2。72 份野生中华猕猴桃果实数量性状的变异系数介于14.68%~42.22%之间,遗传多样性指数介于1.84~2.02 之间,具有较大的遗传差异,且变异范围较广。其中,单果质量介于14.87~78.80 g之间,均值为33.68 g,遗传多样性指数和变异系数分别为1.84 和42.22%;果实纵径介于26.84~61.69 mm之间,均值为44.48 mm,遗传多样性指数和变异系数分别为1.96 和18.6%;果实横径介于27.37~53.46 mm 之间,均值为36.38 mm,遗传多样性指数和变异系数分别为1.89 和14.68%;果形指数介于0.74~1.71之间,均值为1.23,遗传多样性指数和变异系数分别为2.02和17.05%;可溶性固形物含量(w,后同)介于8.44%~17.40%之间,均值为12.52%,遗传多样性指数和变异系数分别为1.92和17.13%;干物质含量介于12.09%~23.07%之间,均值为17.02%,遗传多样性指数和变异系数分别为1.95和14.79%。

表2 72 份野生中华猕猴桃果实数量性状分布特征和变异情况
Table 2 Distribution and variation of fruit quantitative traits of 72 wild A.chinensis accessions

性状Trait 标准差SD多样性指数H’变异系数CV/%单果质量Fruit weight/g果实纵径Fruit length/mm果实横径Fruit diameter/mm果形指数Fruit shape index可溶性固形物含量Soluble solids content/%干物质含量Dry matter content/%数值Value平均值Mean 33.68 44.48 36.38 1.23 12.52 17.02最大值Max 78.80 61.69 53.46 1.71 17.40 23.07最小值Min 14.87 26.84 27.37 0.74 8.44 12.09 14.22 8.27 5.34 0.21 2.15 0.03 1.84 1.96 1.89 2.02 1.92 1.95 42.22 18.60 14.68 17.05 17.13 14.79

2.3 聚类分析

基于数量性状对72份种质资源进行聚类分析,在遗传距离为15 处可聚集为4 大组群,结果见图2。不同组群猕猴桃种质的性状具有显著的差异并且各有特点(图3)。第Ⅰ组群由15 份种质构成,其可溶性固形物含量和干物质含量显著高于其他组群,果实纵径显著小于其他组群;第Ⅱ组群由29 份种质构成,其可溶性固形物含量和干物质含量显著低于其他组群;第Ⅲ组群由11 份种质构成,其果形指数显著高于其他组群,果实纵径最大;第Ⅳ组群由17份种质构成,其单果质量和果实横径显著高于其他组群。

图2 72 份野生中华猕猴桃聚类分析
Fig.2 Cluster analysis of 72 wild A.chinensis accessions

图3 不同分组的性状差异
Fig.3 Difference of traits in different groups

2.4 相关性分析

对6 个数量性状进行相关性分析,结果见表3。皮尔逊相关系数(pearson correlation coefficient)分析表明,部分性状之间存在显著或极显著相关性。单果质量与果实纵径和果实横径呈极显著正相关,果实纵径与果实横径和果形指数呈极显著正相关,可溶性固形物含量与干物质含量呈极显著正相关;果实纵径与干物质含量呈显著负相关,果实横径与果形指数呈显著负相关。

表3 果实数量性状相关性分析
Table 3 Correlation analysis of fruit quantitative traits

注:*表示显著相关(p<0.05),*表示极显著相关(p<0.01)。
Note:*represented significant correlation(p<0.05),**represented extremely significant correlation(p<0.01).

性状Trait单果质量Fruit weight果实纵径Fruit length果实横径Fruit diameter果形指数Fruit shape index可溶性固形物含量Soluble solids content干物质含量Dry matter content单果质量Fruit weight 1 0.784**0.907**0.099-0.033-0.217果实纵径Fruit length 0.784**1 0.531**0.670**-0.103-0.265*果实横径Fruit diameter 0.907**0.531**1-0.259*-0.048-0.206果形指数Fruit shape index 0.099 0.670**-0.259*1-0.067-0.109可溶性固形物含量Soluble solids content-0.033-0.103-0.048-0.067 1 0.696**干物质含量Dry matter content-0.217-0.265*-0.206-0.109 0.696**1

2.5 主成分分析与综合评价

鉴于数量性状间具有一定的相关性,为了确定各性状对果实品质贡献的大小,采用主成分分析法对72 份野生中华猕猴桃果实数量性状进行主成分提取,结果如表4 所示。抽取到3 个特征值大于1的主成分,第1 主成分的特征值为2.704,贡献率为45.070%,主要由特征向量值较高的单果质量(0.917)、果实纵径(0.785)和果实横径(0.892)决定,可定义为果实大小因子;第2 主成分的特征值为1.587,贡献率为26.450%,主要由特征向量值可溶性固形物含量(0.825)和干物质含量(0.724)决定,可定义为糖分因子;第3 主成分的特征值为1.387,贡献率为23.123%,主要由特征向量值较大的果形指数(0.900)决定,可定义为果实形状因子。前3 个主成分的累积贡献率达到94.643%,说明前3 个主成分能够较全面地反映6 个数量性状所代表的遗传信息,可进一步用于确定因子权重对果实品质进行综合评价。

表4 前3 个主成分的特征向量、特征值、贡献率及累积贡献率
Table 4 The eigenvectors,eigenvalues,contribution rates and cumulative contribution rates of top3 PCAs

性状Trait单果质量Fruit weight果实纵径Fruit length果实横径Fruit diameter果形指数Fruit shape index可溶性固形物含量Soluble solids content干物质含量Dry matter content初始特征值Eigenvalue贡献率Contribution rate/%累积贡献率Cumulative contribution rate/%主成分Principal component PC1 0.917 0.892 0.785 0.329-0.310-0.498 2.704 45.070 45.070 PC2 0.359 0.062 0.413-0.280 0.825 0.724 1.587 26.450 71.520 PC3-0.113 0.440-0.448 0.900 0.298 0.282 1.387 23.123 94.643

以成分特征向量与其特征值算术平方根的比值得出对应主成分得分系数,依据得分系数与数量性状标准化后的值得出前3个主成分的表达式[28-29],分别为:PC1=0.56X1+0.54X2+0.48X3+0.20X4-0.19X5-0.30X6,PC2=0.23X1+0.01X2+0.26X3-0.18X4+0.51X5+0.45X6,PC3=-0.08X1+0.32X2-0.32X3+0.65X4+0.21X5+0.20X6(其中X1X6依次为标准化后的单果质量、果实纵径、果实横径、果形指数、可溶性固形物和干物质含量)。以各主成分对应的贡献率为权重,可得到各种数量性状的综合得分(Dn),其表达式为:Dn=0.450 70PC1+0.264 50PC2+0.231 23PC3。72 份野生中华猕猴桃果实数量性状的综合得分及排序见表5,综合得分越高,其综合品质相对优良。其中,排名1~8 的YC36、YC66、YC08、YC07、YC69、YC18、YC67 和YC68 共8 份种质(图4)的果实综合得分大于1,综合表现优良,可以列为重点研究对象用于后续品种选育或遗传改良;排名9~32 的24 份种质综合得分介于0~1之间,综合表现一般;排名33~72的40份种质综合得分小于0,综合表现较差。

表5 72 份野生中华猕猴桃果实数量性状综合得分与排名
Table 5 Comprehensive scores and ranking of quantitative traits of 72 wild A.chinensis accessions

代号Code综合得分Comprehensive score排名Ranking代号Code综合得分Comprehensive score排名Ranking YC36 YC66 YC08 YC07 YC69 YC18 YC67 YC68 YC03 YC17 YC09 YC37 YC50 YC70 YC04 YC25 YC05 YC54 YC02 YC57 YC65 YC40 YC72 YC45 YC38 YC41 YC06 YC44 YC33 YC19 YC53 YC56 YC34 YC32 YC48 YC62主成分得分Principal component score PC1 4.02 3.85 4.34 2.16 1.83 2.04 2.70 1.15 1.44 2.18 1.77 0.67 1.32 1.52 1.61 1.96 0.58 1.11 1.23 0.41 1.15 0.69 0.62 0.57 0.45-0.14 1.20-0.16-0.43 0.49 0.79 1.32-0.76 1.29-0.53-1.20 PC2 2.28 0.94-0.49 1.73 0.54 1.24 0.82 0.35-0.52-0.77 0.68 0.10-0.19 0.64 1.05-1.33 1.18-0.38-0.57-0.09 0.15 0.24 0.31-0.01 0.51-0.40-1.18 0.11 0.03 0.29-0.61 0.47 0.33-2.32-0.02 1.36 PC3-1.04-0.03-0.40 0.67 2.57 0.08-1.31 1.86 2.06 0.87-0.20 2.26 1.18-0.19-0.93-0.03-0.22 0.27 0.17 1.17-0.59-0.03-0.11 0.23-0.29 1.87-0.28 0.89 1.48-0.68-0.44-2.79 0.96-0.12 0.73 0.29 2.17 1.98 1.73 1.58 1.56 1.26 1.13 1.04 0.99 0.98 0.93 0.85 0.82 0.81 0.79 0.52 0.52 0.46 0.44 0.43 0.42 0.37 0.34 0.31 0.27 0.26 0.17 0.16 0.16 0.14 0.09 0.07-0.03-0.06-0.08-0.11 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 YC30 YC49 YC43 YC27 YC31 YC10 YC26 YC12 YC51 YC59 YC52 YC71 YC16 YC24 YC01 YC60 YC29 YC42 YC35 YC61 YC28 YC11 YC14 YC64 YC39 YC46 YC23 YC20 YC15 YC21 YC47 YC55 YC63 YC13 YC58 YC22主成分得分Principal component score PC1 0.61-0.87 0.21-1.76-1.18 0.31 0.29-0.53 0.01-0.73-0.18-0.72-1.73-0.76-0.46-0.16-2.56-1.01-2.50-1.77-1.57-1.85-1.06-0.73-1.11-1.49-0.80-1.42-2.45-3.25-2.22-1.48-1.44-0.76-3.00-3.09 PC2-1.06 1.04-0.70 2.26 1.69-0.62-1.62-0.51-1.12-0.08-1.23 0.40 1.75 0.12-0.77-1.25 1.28-1.71 1.11 0.55 0.80 0.52-1.30-1.22-1.78-1.09-0.75-0.74 0.72 1.25 0.20-1.28-0.23-0.88 0.16-0.36 PC3-0.47-0.05-0.18 0.26-0.36-1.28-0.21 0.07-0.43-0.29-0.17-1.29-0.92-1.00-0.62-0.61 1.07 1.48 1.07-0.04-0.75-0.01 0.41-0.44 0.68 0.65-1.23-0.10 0.08 0.79-0.46-0.29-1.76-2.63 0.11-1.01-0.12-0.13-0.13-0.14-0.17-0.32-0.35-0.36-0.39-0.42-0.45-0.52-0.53-0.54-0.55-0.55-0.57-0.57-0.59-0.66-0.67-0.70-0.73-0.75-0.81-0.81-0.84-0.86-0.90-0.95-1.05-1.07-1.11-1.18-1.29-1.72 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

图4 综合得分排序前8 的野生中华猕猴桃果实
Fig.4 The fruit of top 8 wild Actinidia chinensis accessions according to comprehensive scores

3 讨 论

3.1 宜昌市野生猕猴桃果实性状的多样性

变异系数(CV)和多样性指数(H’)是反映多样性的重要指标[30]。此次从湖北省宜昌市收集到中华猕猴桃果实72 份,各性状的多样性指数介于0.25~2.02,均值为1.19;变异系数介于11.74%~71.15%之间,均值为41.36%。这表明宜昌市野生猕猴桃果实具有丰富的表型遗传多样性,尤其是果实形态和大小等指标表现出丰富的遗传变异。其中,多样性指数较高的为果形指数、果实纵径、可溶性固形物和干物质含量等,变异系数较大的为果实形状、果喙形状、软腐程度和果肉颜色等。聚类分析可以将72份种质分为4 大类群,各类群之间具有显著差别。相关性分析表明果实的纵、横径与单果质量之间具有高度的相关性,可溶性固形物含量与干物质含量之间高度正相关,这与李跃红等[31]和王依等[32]在栽培品种中的研究结果一致。主成分分析可以综合多指标信息,通过综合性指标加权对种质资源进行综合评价,因此被广泛应用[33-34]。对72份猕猴桃果实的6个数量性状进行主成分分析,前3 个主成分累计贡献率达到94.643%,能代表原始数据的绝大部分信息。综合得分显示,有8 份种质的综合得分大于1,可以作为优良种质进一步研究。

3.2 资源利用与宜昌市猕猴桃产业发展的建议

宜昌市野生猕猴桃种质资源成就了世界上商业栽培最早、栽培面积最大的猕猴桃品种海沃德,让湖北省宜昌市成为世界猕猴桃栽培驯化的起源中心[35],此后以海沃德为骨干亲本选育出的猕猴桃品种近20个[36-37]。然而,除了海沃德系列品种以外,只有三峡一号(鄂猕猴桃4号)等极少数品种是从宜昌市野生猕猴桃资源中发掘出来的[38]。反观江西省仅从武宁县的野生猕猴桃资源中就诞生了金桃、武植3号、金霞、金早、庐山香和磨山4号等优良品种,其中不乏主栽品种[13]。宜昌市是湖北省猕猴桃种质资源最丰富的区域之一[23],但是近些年缺乏对宜昌市野生猕猴桃种质资源的规模收集与科学利用,尤其是缺少对优异种质的筛选与开发。本次对宜昌市72份中华猕猴桃野生果实遗传多样性进行分析,明确了宜昌市野生猕猴桃果实性状具有较高的遗传多样性,其丰富的资源中蕴含了许多优异种质,有效地促进了宜昌市野生猕猴桃种质资源的筛选与利用。

资源是产业的基础,更是产业优势,本土资源有利于筛选到适应当地生态环境的特色品种。为了将宜昌市野生猕猴桃资源优势最大化,提出以下3 点建议:一是加强资源普查与收集,做到普查大众,收集小众,即在详细摸清全市野生猕猴桃资源分布区域和分布类型的基础上,采用多样性分析、主成分分析等方法进行资源评价,着重收集能代表特定区域遗传多样性的核心种质,并重视收集性状优良的特异种质,避免盲目收集造成资源冗余和成本浪费。二是注重资源保护与利用,实现资源的合理保育,如以三峡植物园猕猴桃资源圃为代表的易地保护,或以远安县洋坪镇猕猴桃原生地保护小区为代表的就地保护,兼顾2 种保护模式助力野生猕猴桃资源的有效保育。对于收集的优异资源,积极开展性状评价和DUS 测试,协同实生育种、杂交育种和诱变育种等多种育种模式,加快新品种选育进程。三是强化人才队伍,上述工作离不开猕猴桃科研队伍的推动,湖北省正积极推动猕猴桃产业成为湖北省第四大特色水果产业[24],加强人才队伍建设始终是推动科研进步和产业发展的关键点。

4 结 论

宜昌市野生猕猴桃种质资源遗传变异丰富,果实表型多样性高,从72 份种质资源中筛选到8 份综合表现良好的优异单株,可以进一步开发和利用,为选育具有地方适应性的优良品种提供了材料支撑。

参考文献References:

[1] 钟彩虹,黄文俊,李大卫,张琼,李黎.世界猕猴桃产业发展及鲜果贸易动态分析[J].中国果树,2021(7):101-108.ZHONG Caihong,HUANG Wenjun,LI Dawei,ZHANG Qiong,LI Li.Dynamic analysis of global kiwifruit industry development and fresh fruit trade[J].China Fruits,2021(7):101-108.

[2] ZHONG C H,HUANG W J,WANG Z P,LI L,LI D W,ZHANG Q,ZHAO T T,ZHANG P.The breeding progress and development status of the kiwifruit industry in China[J].Acta Horticulturae,2022,1332:445-454.

[3] 钟彩虹,黄宏文.中国猕猴桃科研与产业四十年[M].合肥:中国科学技术大学出版社,2018.ZHONG Caihong,HUANG Hongwen.Forty years of scientific research and industry of kiwifruit in China[M].Hefei:University of Science and Technology of China Press,2018.

[4] 林姗,陆兴利,赵金鹏,刘原,罗家栋,罗伟,李庆,王茹琳.四川省猕猴桃溃疡病发生的气象条件和综合防治[J].江苏农业科学,2020,48(9):123-126.LIN Shan,LU Xingli,ZHAO Jinpeng,LIU Yuan,LUO Jiadong,LUO Wei,LI Qing,WANG Rulin.Meteorological conditions and comprehensive control of kiwifruit canker in Sichuan Province[J].Jiangsu Agricultural Sciences,2020,48(9):123-126.

[5] 匡美美,高建有,罗庆,查满荣,王琰,朱里,彭小列,刘世彪.湘西州猕猴桃溃疡病发病情况及其影响因素分析[J].湖南农业科学,2022(1):56-59.KUANG Meimei,GAO Jianyou,LUO Qing,ZHA Manrong,WANG Yan,ZHU Li,PENG Xiaolie,LIU Shibiao.Occurance and influencing factor analysis of kiwifruit bacterial canker in Xiangxi prefecture[J].Hunan Agricultural Sciences,2022(1):56-59.

[6] 陈曦,岳伟,徐建鹏,陈金华,贾兵,叶振风,刘洪民.猕猴桃主栽品种气候品质评价模型构建[J].生态学杂志,2021,40(12):4119-4127.CHEN Xi,YUE Wei,XU Jianpeng,CHEN Jinhua,JIA Bing,YE Zhenfeng,LIU Hongmin.Evaluation model building for climatic quality of main kiwifruit cultivars[J].Chinese Journal of Ecology,2021,40(12):4119-4127.

[7] LIU Y F,LI D W,ZHANG Q,SONG C,ZHONG C H,ZHANG X D,WANG Y,YAO X H,WANG Z P,ZENG S H,WANG Y,GUO Y T,WANG S B,LI X W,LI L,LIU C Y,HONOUR C.,HE W M,NIU Y,CHEN M,DU L W,GONG J J,DATSON P M,HILARIO E,HUANG H W.Rapid radiations of both kiwifruit hybrid lineages and their parents shed light on a two-layer mode of species diversification[J].The New Phytologist,2017,215(2):877-890.

[8] 韩飞,陈美艳,李昆同,黄文俊,闫春林,刘小莉,张琦,钟彩虹.不同产地‘金圆’猕猴桃低温贮藏下的生理指标及贮藏性变化[J].植物科学学报,2018,36(3):381-392.HAN Fei,CHEN Meiyan,LI Kuntong,HUANG Wenjun,YAN Chunlin,LIU Xiaoli,ZHANG Qi,ZHONG Caihong.Changes in physiological indices and storage properties of‘Jinyuan’kiwifruit from different orchards under low temperature storage[J].Plant Science Journal,2018,36(3):381-392.

[9] 赵治兵,谢国芳,曹森,马立志.基于主成分分析评价不同基地‘贵长’猕猴桃品质特性[J].保鲜与加工,2019,19(5):144-148.ZHAO Zhibing,XIE Guofang,CAO Sen,MA Lizhi.Evaluation of quality characteristics of‘Guichang’kiwifruit from different producing regions based on principal component analysis[J].Storage and Process,2019,19(5):144-148.

[10] 李跃红,冉茂乾,徐孟怀,陈露,赵阳,游元丁,焦彦朝.不同产地红心猕猴桃品质的主成分及聚类分析[J].食品工业科技,2021,42(10):222-228.LI Yuehong,RAN Maoqian,XU Menghuai,CHEN Lu,ZHAO Yang,YOU Yuanding,JIAO Yanchao.Principal component and cluster analysis of quality of red-centred kiwifruit from different habitats[J].Science and Technology of Food Industry,2021,42(10):222-228.

[11] 邓秀新,王力荣,李绍华,张绍铃,张志宏,丛佩华,易干军,陈学森,陈厚彬,钟彩虹.果树育种40 年回顾与展望[J].果树学报,2019,36(4):514-520.DENG Xiuxin,WANG Lirong,LI Shaohua,ZHANG Shaoling,ZHANG Zhihong,CONG Peihua,YI Ganjun,CHEN Xuesen,CHEN Houbin,ZHONG Caihong.Retrospection and prospect of fruit breeding for last four decades in China[J].Journal of Fruit Science,2019,36(4):514-520.

[12] 廖光联,李西时,钟敏,黄春辉,陈璐,徐小彪.江西省五府山野生猕猴桃种质资源调查[J].北方园艺,2019(22):65-70.LIAO Guanglian,LI Xishi,ZHONG Min,HUANG Chunhui,CHEN Lu,XU Xiaobiao.Investigation on the wild kiwifruit germplasm resources in wufu mountain of Jiangxi Province[J].Northern Horticulture,2019(22):65-70.

[13] 黄宏文.中国猕猴桃种质资源[M].北京:中国林业出版社,2013.HUANG Hongwen.Actinidia germplasm resources in China[M].Beijing:China Forestry Publishing House,2013.

[14] 孙雷明,方金豹.我国猕猴桃种质资源的保存与研究利用[J].植物遗传资源学报,2020,21(6):1483-1493.SUN Leiming,FANG Jinbao.Conservation,research and utilization of kiwifruit germplasm resources in China[J].Journal of Plant Genetic Resources,2020,21(6):1483-1493.

[15] 刘磊,李作洲,刘春燕,刘吉祥,蒋水平,阎永齐.贵州东部地区猕猴桃野生种质资源调查[J].中国野生植物资源,2015,34(4):55-58.LIU Lei,LI Zuozhou,LIU Chunyan,LIU Jixiang,JIANG Shuiping,YAN Yongqi.Investigation on wild kiwifruit germplasm resources in the eastern part of Guizhou Province[J].Chinese Wild Plant Resources,2015,34(4):55-58.

[16] 杨海健,伊洪伟,韩国辉,罗友进,潘晓雪.重庆大巴山区野生猕猴桃资源调查和遗传多样性分析[J].植物遗传资源学报,2018,19(2):187-193.YANG Haijian,YI Hongwei,HAN Guohui,LUO Youjin,PAN Xiaoxue.Investigation and diversity analysis of wild Actinidia resources in Daba Mountain of Chongqing[J].Journal of Plant Genetic Resources,2018,19(2):187-193.

[17] 钱东南,徐声法,钭凌娟,陈文明,吴定红,黄小兰.浙江中西部猕猴桃野生资源种类及利用研究初报[J].中国林副特产,2020(2):61-63.QIAN Dongnan,XU Shengfa,DOU Lingjuan,CHEN Wenming,WU Dinghong,HUANG Xiaolan.Primary research on the species and utilization of wild kiwifruit resources in the Midwest of Zhejiang[J].Forest by-Product and Speciality in China,2020(2):61-63.

[18] 姜存良,吴勇,邓浪,蔡光辉,包昌艳,李凯峰,王连春,刘惠民.云南猕猴桃资源的收集及表型多样性分析[J].西南林业大学学报(自然科学),2021,41(2):38-45.JIANG Cunliang,WU Yong,DENG Lang,CAI Guanghui,BAO Changyan,LI Kaifeng,WANG Lianchun,LIU Huimin.Kiwifruit resources collection in Yunnan Province and phenotypic diversity analysis[J].Journal of Southwest Forestry University(Natural Sciences),2021,41(2):38-45.

[19] 胡光明,夏文娟,郑丽,饶航空,雷鸣,王建,赵婷婷,李作洲,钟彩虹.湖北省通山县野生猕猴桃种质资源调查与果实遗传多样性分析[J].植物科学学报,2021,39(6):620-631.HU Guangming,XIA Wenjuan,ZHENG Li,RAO Hangkong,LEI Ming,WANG Jian,ZHAO Tingting,LI Zuozhou,ZHONG Caihong.Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County,Hubei Province[J].Plant Science Journal,2021,39(6):620-631.

[20] 龙云树,吴兴恩,黄守强,张应华,杨荣萍.不同地方野生中华猕猴桃果实品质分析[J].现代农业科技,2020(5):208-209.LONG Yunshu,WU Xingen,HUANG Shouqiang,ZHANG Yinghua,YANG Rongping.Analysis of fruit quality of wild Actinidia chinensis in different places[J].Modern Agricultural Science and Technology,2020(5):208-209.

[21] 王连润,陶磅,陈霞,李坤明,丁仁展,王卫清,吴定财,沙毓沧.野生猕猴桃优异资源果实形态及营养成分分析[J].西南农业学报,2021,34(7):1515-1520.WANG Lianrun,TAO Pang,CHEN Xia,LI Kunming,DING Renzhan,WANG Weiqing,WU Dingcai,SHA Yucang.Analysis on fruit morphology and nutritional composition of excellent germplasm resources of wild kiwifruit[J].Southwest China Journal of Agricultural Sciences,2021,34(7):1515-1520.

[22] 孟芳.宜昌市茶树种植的气候资源分析[J].南方农业,2017,11(33):94.MENG Fang.Analysis on climatic resources of tea planting in Yichang city[J].South China Agriculture,2017,11(33):94.

[23] 武显维,黄仁煌,洪树荣,王圣梅.湖北省猕猴桃资源的调查及其利用[J].武汉植物学研究,1987,5(2):177-184.WU Xianwei,HUANG Renhuang,HONG Shurong,WANG Shengmei.Exploitation and utilization of Actinidia resources in Hubei[J].Journal of Wuhan Botanical Research,1987,5(2):177-184.

[24] 卢梦玲,王友海,吕志藻,鄢华捷,谌丹丹,李鸿昌,吕敏,黄声东,李琼杰.做优做强宜昌市猕猴桃产业的思考与对策[J].湖北农业科学,2020,59(6):165-168.LU Mengling,WANG Youhai,LÜ Zhizao,YAN Huajie,CHEN Dandan,LI Hongchang,LÜ Min,HUANG Shengdong,LI Qiongjie.Thinking and countermeasures of improving and strengthening kiwifruit industry in Yichang City[J].Hubei Agricultural Sciences,2020,59(6):165-168.

[25] 中华人民共和国农业部.植物新品种特异性、一致性和稳定性测试指南猕猴桃属:NY/T 2351—2013[S/OL].北京:中国标准出版社,2013:8-11.Chinese Ministry of Agriculture.Guidelines for the conduct of tests for distinctness, uniformity and stability,Actinidia:NY/T 2351—2013[S/OL].Beijing: China Quality and Standards Publishing&Media Co.,Ltd.,2013:8-11.

[26] 张斌斌,蔡志翔,沈志军,严娟,马瑞娟,俞明亮.观赏桃种质资源表型性状多样性评价[J].中国农业科学,2021,54(11):2406-2420.ZHANG Binbin,CAI Zhixiang,SHEN Zhijun,YAN Juan,MA Ruijuan,YU Mingliang.Diversity analysis of phenotypic characters in germplasm resources of ornamental peaches[J].Scientia Agricultura Sinica,2021,54(11):2406-2420.

[27] 王铭,刘江,王长彪,郝科星,侯富恩,张涛,杨晋明.109 份西瓜育种材料果实性状的遗传多样性分析[J].中国瓜菜,2020,33(10):23-28.WANG Ming,LIU Jiang,WANG Changbiao,HAO Kexing,HOU Fuen,ZHANG Tao,YANG Jinming.Genetic diversity analysis of fruit characters of 109 watermelon breeding materials[J].China Cucurbits and Vegetables,2020,33(10):23-28.

[28] 刘磊,李争艳,雷华,高本旺,赵佳,李薇.30 个猕猴桃品种(单株)主要果实品质特征的综合评价[J].果树学报,2021,38(4):530-537.LIU Lei,LI Zhengyan,LEI Hua,GAO Benwang,ZHAO Jia,LI Wei.Comprehensive evaluation of main fruit quality characteristics with 30 kiwifruit cultivars(strains)[J].Journal of Fruit Science,2021,38(4):530-537.

[29] 邓素枫,廖炜,龚碧涯,李先信,曾斌,杨水芝.湖南30 个柚类品种(资源)果实品质分析与评价[J].中国南方果树,2021,50(3):36-41.DENG Sufeng,LIAO Wei,GONG Biya,LI Xianxin,ZENG Bin,YANG Shuizhi.Evaluation of fruit quality of 30 pomelo varieties in Hunan Province[J].South China Fruits,2021,50(3):36-41.

[30] 陈启亮,杨晓平,范净,张靖国,杜威,赵碧英,易显荣,胡红菊.广西砂梨地方品种果实品质性状分析及综合评价[J].南方农业学报,2021,52(9):2524-2533.CHEN Qiliang,YANG Xiaoping,FAN Jing,ZHANG Jingguo,DU Wei,ZHAO Biying,YI Xianrong,HU Hongju.Fruit quality character analysis and comprehensive evaluation of Pyrus prifolia Nakai landrace in Guangxi[J].Journal of Southern Agriculture,2021,52(9):2524-2533.

[31] 李跃红,冉茂乾,徐孟怀,陈露,游元丁,赵阳,焦彦朝.不同品种猕猴桃果实品质比较与综合评价[J].食品与发酵工业,2020,46(23):162-168.LI Yuehong,RAN Maoqian,XU Menghuai,CHEN Lu,YOU Yuanding,ZHAO Yang,JIAO Yanchao.Comparison and comprehensive evaluation of fruit quality of different varieties of kiwifruit[J].Food and Fermentation Industries,2020,46(23):162-168.

[32] 王依,雷靖,陈成,徐明,邴昊阳,雷玉山.美味猕猴桃新品种‘瑞玉’果实品质综合评价[J].西北农林科技大学学报(自然科学版),2018,46(10):101-107.WANG Yi,LEI Jing,CHEN Cheng,XU Ming,BING Haoyang,LEI Yushan.Comprehensive evaluation of fruit quality of a new delicious kiwifruit variety‘Ruiyu’[J].Journal of Northwest A& F University (Natural Science Edition),2018,46(10):101-107.

[33] 冷家归,李德文,周亚丽,姚正治,王少铭,侯颖辉,李晋华,罗莉斯.大蒜种质资源农艺性状分析及综合评价[J].南方农业学报,2021,52(11):2952-2961.LENG Jiagui,LI Dewen,ZHOU Yali,YAO Zhengzhi,WANG Shaoming,HOU Yinghui,LI Jinhua,LUO Lisi.Analysis and evaluation of agronomic traits in Allium sativum L.germplasm resources[J].Journal of Southern Agriculture,2021,52(11):2952-2961.

[34] 高路银,杨森要,王艳玲,许夏静,胡建斌.野生甜瓜果实性状变异及聚类分析[J].中国瓜菜,2018,31(11):6-12.GAO Luyin,YANG Senyao,WANG Yanling,XU Xiajing,HU Jianbin.Studies on variation of the fruit traits of the wild melons and cluster analysis[J].China Cucurbits and Vegetables,2018,31(11):6-12.

[35] 黄宏文.猕猴桃驯化改良百年启示及天然居群遗传渐渗的基因发掘[J].植物学报,2009,44(2):127-142.HUANG Hongwen.History of 100 years of domestication and improvement of kiwifruit and gene discovery from genetic introgressed populations in the wild[J].Chinese Bulletin of Botany,2009,44(2):127-142.

[36] 姜志强,贾东峰,廖光联,钟敏,黄春辉,陶俊杰,徐小彪.中国育成的猕猴桃品种(系)及其系谱分析[J].中国南方果树,2019,48(6):142-148.JIANG Zhiqiang,JIA Dongfeng,LIAO Guanglian,ZHONG Min,HUANG Chunhui,TAO Junjie,XU Xiaobiao.Kiwifruit varieties(lines)bred in China and their pedigree analysis[J].South China Fruits,2019,48(6):142-148.

[37] 黄宏文,邹帅宇,程春松.从植物引种驯化史轨迹探讨野生果树驯化与育种[J].植物遗传资源学报,2021,22(6):1463-1473.HUANG Hongwen,ZOU Shuaiyu,CHENG Chunsong.Domestication and breeding strategy of wild fruit trees on track of plant introduction and domestication history[J].Journal of Plant Genetic Resources,2021,22(6):1463-1473.

[38] 周民生,蒋迎春,罗前武,王志静,吴黎明.美味猕猴桃早熟新品种‘鄂猕猴桃4 号’[J].园艺学报,2008,35(7):1087.ZHOU Minsheng,JIANG Yingchun,LUO Qianwu,WANG Zhijing,WU Liming.A new early ripening Actinidia deliciosa cultivar‘E Mihoutao 4’[J].Acta Horticulturae Sinica,2008,35(7):1087.

Analysis and comprehensive evaluation of fruit trait diversity of 72 Actinidia chinensis accessions in Yichang

HU Guangming1,2, LI Chunbin3, YANG Bin3, WANG Zhouqian1, SHEN Suyun1,4, LI Zuozhou1*,ZHONG Caihong1*
(1Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China;2University of Chinese Academy of Sciences,Beijing 100049, China;3Yichang Seed Supervision Station, Yichang 443005, Hubei, China;4College of Biological and Pharmaceutical Sciences,Three Gorges University,Yichang 443002,Hubei,China)

Abstract:【Objective】Kiwifruit has high nutritional and economic values.Actinidia has 75 species or variants,most of which are found only in China.Actinidia chinensis(including A.chinensis var.chinensis and A.chinensis var.deliciosa)is currently the most important domesticated species,with more than one hundred cultivars.These cultivars are mostly from the wild resources.China’s abundant wild Actinidia resources have greatly contributed to the development of the world kiwifruit industry.Hayward,the most widely grown cultivar in the world, comes from the wild resources in Yichang, Hubei Province,and has spawned more than 20 related varieties.In recent years, there has been a lack of information about wild kiwifruit germplasm resources in Yichang.We collected in Yichang 72 wild A. chinensis.Through the study of trait diversity,excellent varieties can be screened.【Methods】The 72 wild A.chinensis fruits collected from Yichang, Hubei province were used as the materials.A total of 14 qualitative traits including fruit shape, fruit shoulder shape, head shape, beak shape, surface hairiness, calyx ring, sepals persistence, degree of lenticel protrusion, cross section shape of fruit center, flesh color,flesh center color, fruit flavor, degree of soft rot during storage were described.Fruit weight, longitudinal and transverse diameters,fruit shape index,soluble solid content and dry matter content were determined.Statistical software was used to analyze genetic diversity and carry out cluster analysis and principal component analysis based on quantitative traits, and comprehensive evaluation was conducted based on principal component score, and the excellent accessions was screened out according to ranking.【Results】The 72 wild A. chinensis fruits had abundant genetic variation in each trait.The genetic diversity index (H’) of the 14 qualitative traits ranged from 0.25 (flesh center color) to 1.36 (fruit shape), and the coefficient of variation (CV) ranged from 11.79% (flesh center color) to 71.15% (fruit shape).The genetic diversity index of the six quantitative traits ranged from 1.84 (fruit weight) to 2.02(fruit shape index), and the coefficient of variation ranged from 14.68% (fruit diameter) to 42.22%(fruit weight).Cluster analysis divided the accessions into 4 groups at 15 Euclidean distance.Group Ⅰconsisted of 15 accessions, and the content of soluble solid and dry matter were significantly higher than those of the other groups, while the fruit diameter was significantly smaller than that of the other groups.The soluble solid and dry matter contents in group Ⅱ, which consisted of 29 accessions, were significantly lower than those of the other groups.Group Ⅲwas composed of 11 accessions and the fruit shape index in this group was significantly higher than in the other groups,and the longitudinal diameter of fruit was the largest.Group Ⅳincluded 17 accessions and their single fruit weight and fruit transverse diameter were significantly higher than those in the other groups.The results of principal component analysis and comprehensive evaluation showed that the accumulative contribution rate of the first three principal components was 94.643%; the characteristic value of the first principal component was 2.704, and the contribution rate was 45.070%, which was mainly determined by the higher characteristic vector value of single fruit weight, fruit longitudinal diameter and fruit transverse diameter.The characteristic value of the second principal component was 1.587,and the contribution rate was 26.450%, which was mainly determined by the characteristic vector value of soluble solid content and dry matter content.The characteristic value of the third principal component was 1.387 and the contribution rate was 23.123%, which was mainly determined by the fruit shape index.The comprehensive scores of the accessions ranged from-1.72 to 2.17, and YC36, YC66, YC08, YC07, YC69, YC18,YC67 and YC68 had comprehensive scores greater than 1,which could be used as excellent wild breeding materials.【Conclusion】The 72 wild kiwifruit accessions in Yichang have high phenotypic diversity index, high coefficient of variation and rich genetic diversity.Eight of them with excellent comprehensive characters were screened for breeding of local varieties.

Key words:Wild kiwifruit;Actinidia chinensis;Fruit trait;Genetic diversity;Comprehensive evaluation

中图分类号:S663.4

文献标志码:A

文章编号:1009-9980(2022)09-1540-13

DOI:10.13925/j.cnki.gsxb.20220118

收稿日期2022-03-14

接受日期:2022-04-13

基金项目国家重点研发计划项目(2019YFD1000201);农业农村部物种品种资源保护项目(2130135);湖北省重点研发计划项目(2021BBA100)

作者简介胡光明,男,在读硕士研究生,研究方向为猕猴桃种质资源鉴定与保育。Tel:15027191724,E-mail:wangyi_guangming@163.com

*通信作者Author for correspondence.Tel:027-87510331,E-mail:lizz@wbgcas.cn;Tel:027-87510298,E-mail:zhongch@wbgcas.cn