近年来,梨树生理性黄化病发生普遍,严重影响树体健康、果园产量和果品质量。导致树体黄化的原因比较复杂,环境、嫁接砧木、树体营养、树体管理等因素均会导致树体黄化。铁在植物叶绿素的形成过程中扮演着重要角色,缺铁时植物的叶绿素合成受到阻碍。植物缺铁首先表现为新叶失绿,远观全园可以看到梨树新梢上部的叶片黄化,近看树上有许多顶端光秃的枝梢。黄化现象在其他果树上也有报道,缺铁黄化的苹果产量大幅度下降,严重缺铁时果实产量减少达90%以上,甚至导致整株死亡[1]。在高pH植条件下,每增加1个pH单位,溶液中活性铁就为原来的千分之一。黄河故道地区是我国梨主产区之一,土壤pH 植在7.5~8.0 之间,缺铁现象严重[2]。近20年,梨树生产中不科学的肥水管理,导致近几年梨产业中黄化病广泛发生,已严重影响梨产业的健康发展[3]。
目前,我国防治果树黄化病仍然以施用无机的硫酸亚铁为主,其使用量大致占铁肥90%以上,硫酸亚铁提供的亚铁离子在土壤中极易氧化成三价铁而失效,因此土壤施用硫酸亚铁有效性很差[4-6],土施螯合型铁肥效果较好[7]。笔者通过使用3 种新型的肥料来研究它们对梨树黄化的治疗效果,从中筛选出可供生产中大面积推广试验的黄化病治疗性肥料,对生产中黄化病的防治及产业的健康发展有积极的意义。
试验地点位于河南省郑州市中国农业科学院郑州果树研究所梨圃,土壤为沙壤土,试验材料为梨圃中黄化严重的红酥蜜梨。
1.2.1 试验设计 本试验设3个处理,分别为处理1(必益铁20 g+微晶C 20 g,对水20 kg)、处理2(福绿来20 g+海藻素20 g,对水20 kg)、处理3(土壤调理剂200 mL,对水20 kg),设黄化树对照(黄CK,灌清水)、正常树对照(绿CK,灌清水)2 个对照,单株小区,5次重复。
5 月6 日,先对处理的黄化树拍照,并采集3 个处理、2 个对照20~40 cm 土层土壤样本各1 kg。然后分别用处理1、处理2、处理3对红酥蜜黄化树进行治疗性处理,沿树冠滴水线向内1/2处挖30 cm左右深的坑,用各处理灌根后覆土。用清水处理对照,单株小区,每个处理5次重复。观察黄化树体转绿时再次拍照,8月中旬果实成熟时,分别采集绿CK、黄CK、处理1、处理2和处理3的同一采样部位20~40 cm土层的土壤样品各1 kg、果实样品20 个、叶片样品30个,随机取样。样品采集后立即送往实验室处理,分别测定土壤中pH 植以及有机质、氮、有效磷、速效钾、总铁、有效铁、有效锌、有效铜、有效锰的含量,测定叶片中氮、磷、钾、总铁、锰、锌、铜、活性铁的含量,测定果实单果质量以及维生素C、可溶性固形物、总酸、可溶性糖的含量。
1.2.2 测定方法 果实中维生素C 含量的测定参照食品安全国家标准GB 5009.86—2016;总酸含量的测定参照食品安全国家标准GB 12456—2021;可溶性糖含量的测定参照农业行业标准NY/T 2742—2015 中的3,5-二硝基水杨酸比色法。土壤pH 植的测定参照农业行业标准NY/T 1121.2—2006;土壤氮含量的测定用凯氏法;有效磷含量的测定参照农业行业标准NY/T 1121.7—2014;速效钾含量的测定参照农业行业标准NY/T 889—2004;土壤有效铁、有效锌、有效铜和有效锰含量的测定参照农业行业标准NY/T 890—2004 中二乙三胺五乙酸(DTPA)浸提法。叶片中氮、磷含量的测定参照农业行业标准NY/T 2017—2011;叶片中钾含量的测定参照国家标准GB 5009.91—2017;叶片中铁含量的测定参照国家标准GB 5009.90—2016;叶片中锰含量的测定参照国家标准GB 5009.242—2017;叶片中锌含量的测定参照国家标准GB 5009.14—2017;叶片中铜含量的测定参照国家标准GB 5009.13—2017。
采用Microsoft Excel 2007数据分析软件进行数据处理与作图,采用SPSS 20.0 软件进行相关性分析,采用Duncan新复极差法检验差异显著性。
对比黄化树和正常树土壤理化性状及矿质元素含量,二者土壤有机质含量均偏低,低于1%;pH植均偏高,高于8.0。黄化树土壤有效磷、有效铁、有效锌、有效铜含量均显著低于正常树,土壤pH植以及有机质、氮、速效钾、总铁的含量均差异不显著(表1)。
表1 黄化树和正常树土壤理化性状和矿质元素含量的对比
Table 1 Comparison of soil physicochemical properties and mineral element contents between normal and etiolated tree
注:表中不同小写字母表示在0.05 水平差异显著。下同。
Note:Different lowercase letters in the table indicate significant difference at the 0.05 level.The same below.
处理Treatment黄化树Etiolated tree正常树Normal tree处理Treatment黄化树Etiolated tree正常树Normal tree w(速效钾)Rapidly available potassium/(mg·kg-1)132.00±6.66 a 144.00±36.77 a w(有效锰)Available Mn/(mg·kg-1)8.15±0.07 b 9.40±0.23 a pH 植pH value 8.50±0.06 a 8.45±0.07 a w(总铁)Total iron(×104 mg·kg-1)4.06±0.26 a 3.72±0.62 a有机质Organic matter/(g·kg-1)3.58±0.35 a 5.37±1.68 a w(有效铁)Available iron/(mg·kg-1)4.50±0.21 b 6.25±0.07 a w(氮)Nitrogen/%0.030±0.006 a 0.040±0.007 a w(有效锌)Available zinc/(mg·kg-1)0.48±0.04 b 0.78±0.11 a w(有效磷)Available phosphorus/(mg·kg-1)3.10±0.61 b 8.25±0.78 a w(有效铜)Available copper/(mg·kg-1)0.70±0.04 b 2.11±0.38 a
对黄化树和正常树土壤氮、有效磷、速效钾、总铁、有效铁、有效锌、有效铜和有效锰含量跟踪调查,1 个月后,黄化树土壤有效锰含量下降,其他均升高;正常树土壤氮、有效磷、速效钾、总铁、有效铁、有效锌、有效铜和有效锰含量均升高。黄化树土壤氮、速效钾、总铁、有效铁、有效锌、有效铜、有效锰含量变化不显著,土壤有效磷含量显著升高;正常树土壤氮、有效磷、有效锌、有效锰含量均显著性升高(表2)。
表2 黄化树和正常树土壤中矿质元素含量不同时期的变化对比
Table 2 Comparison of mineral element contents in soil between etiolated tree and normal tree at different periods
处理Treatment黄化树Etiolated tree正常树Normal tree处理Treatment黄化树Etiolated tree正常树Normal tree时间Time 5月6日May 6 6月6日June 6 5月6日May 6 6月6日June 6时间Time氮5月6日May 6 6月6日June 6 5月6日May 6 6月6日June 6 Nitrogen/%0.030±0.006 b 0.050±0.010 ab 0.040±0.007 b 0.060±0.000 a w(有效铁)Available iron/(mg·kg-1)4.50±0.21 b 5.57±1.61 b 6.25±0.07 a 8.05±0.92 a w(有效磷)Available phosphorus/(mg·kg-1)3.10±0.61c 14.70±4.10 b 8.25±0.78 bc 28.35±1.34 a w(有效锌)Available zinc/(mg·kg-1)0.48±0.04 b 0.86±0.39 b 0.78±0.11 b 1.56±0.17 a w(速效钾)Rapidly available potassium/(mg·kg-1)132.00±6.66 a 168.00±25.50 a 144.00±36.77 a 145.00±24.04 a w(有效铜)Available copper/(mg·kg-1)0.70±0.04 a 1.35±1.27 a 2.11±0.38 a 5.00±4.91 a w(总铁)Total iron/(×104 mg·kg-1)4.06±0.26 a 3.50±0.24 a 3.72±0.62 a 3.60±0.16 a w(有效锰)Available Mn/(mg·kg-1)9.40±0.23 ab 5.95±0.55 b 8.15±0.07 b 12.20±2.54 a
用3 种不同的肥料对红酥蜜黄化树进行治疗性处理,处理10 d 后可看到叶片明显转绿。从处理前后的对比照片可看出,处理1 和处理2 的黄化治疗效果十分显著,叶片已经明显转绿(图1、2),处理3 对黄化治疗没有效果,叶片仍处于黄化状态(图3)。
图1 黄化处理 1 前后对比照
Fig. 1 Comparison before and after treatment
图中 1~3 为处理前拍照;图中 4~6 为处理 10 d 后拍照。
1-3. Photos were taken before treatment,4-6. Photos were taken 10 days after treatment.
图2 黄化处理 2 前后对比照
Fig. 2 Comparison before and after treatment 2
图中 1~3 为处理前拍照;图中 4~6 为处理 10 d 后拍照。
1-3. Photos were taken before treatment,4-6. Photos were taken 10 days after treatment.
图3 黄化处理3 前后对比照
Fig.3 Comparison before and after treatment 3
图中1~3 为处理前拍照;图中4~6 为处理10 d 后拍照。
1-3.Photos were taken before treatment,4-6.Photos were taken 10 days after treatment.
黄化处理后,3个不同处理,果实的单果质量以及总酸、可溶性糖、磷、钾、铁、锰、锌含量均差异不显著。处理2果实中可溶性固形物含量显著高于处理1,与处理3 差异不显著,且果实中磷、钾、铁、锰、锌的含量均高于处理1、3。处理3 果实中铜的含量极显著高于处理1和2(图4、5)。
图4 不同处理对果实单果质量、磷含量的影响
Fig.4 Effects of different treatments on fruit weight and phosphorus contents
图5 不同处理对果实品质的影响
Fig.5 Effects of different treatments on fruit quality
黄化处理1个月后,3个处理的pH植均下降,与黄化对照差异不显著,均偏碱性。3 个处理的土壤氮、速效钾、总铁、有效铜含量与对照均差异不显著。处理1 与对照的土壤有效磷含量差异显著,是对照的7.2 倍,3 个处理间差异不显著。处理1、2 土壤中有效铁的含量均显著高于对照和处理3,分别是对照的2.6 倍、2.3 倍。处理1 土壤中有效锌的含量极显著高于对照、处理2和3,是对照的5.2倍。处理1 土壤中有效锰的含量极显著高于对照,是对照的2.7 倍,与处理2、3 差异不显著。综合对比3 个处理的效果和对土壤pH植及矿质元素含量的影响,处理1、2叶片转绿,处理3叶片仍黄化,处理1土壤pH植以及氮、速效钾、总铁、有效铜、土壤有效磷、有效锰含量与对照或处理3 差异不显著,说明这几个因素和树体黄化没有直接关系,处理1、2 土壤有效铁的含量显著高于对照和处理3,说明土壤有效铁的缺乏是红酥蜜树体黄化的直接原因(图6、7)。
图6 不同处理对土壤氮、有效磷、速效钾含量的影响
Fig.6 Effects of different treatments on soil nitrogen,available phosphorus and rapidly available potassium contents
图7 不同处理对土壤pH 值及矿质元素含量的影响
Fig.7 Effects of different treatments on soil pH and mineral element contents
处理1、2 土壤氮、有效磷、速效钾、总铁、有效铁、有效锌、有效铜、有效锰的含量均高于对照和处理3,处理1 土壤中不仅有效铁的含量显著高于对照,土壤中有效磷、有效锌、有效铜、有效锰的含量也显著高于对照,处理2土壤中有效铁、有效铜的含量显著高于对照(图6、7)。
黄化处理1 个月后,处理1、2 的叶片转绿,处理3的叶片仍然黄化。处理1、2、3叶片中锰、活性铁含量显著高于黄化对照,3个处理间差异不显著,叶片中磷、钾、铜含量显著低于黄化对照。处理1叶片中氮、磷、铜、总铁、活性铁含量均高于处理2,但差异不显著。处理1 叶片钾含量显著高于处理2,叶片锰、锌含量显著低于处理2。处理3叶片总铁、锰、活性铁、锌含量显著高于黄化对照,叶片中磷、钾、铜含量显著低于对照。处理3叶片中锰的含量显著高于处理1、2。
对比黄化树对照和正常树对照,叶片中氮、总铁、活性铁、锰、锌含量均差异不显著;黄化树叶片中磷、钾、铜含量显著高于正常树,活性铁的含量低于正常树(图8、9)。
图8 不同处理对叶片氮、磷、钾含量的影响
Fig.8 Effects of different treatments on Nitrogen,phosphorus and potassium contents in leaves
图9 不同处理对叶片矿质元素含量的影响
Fig.9 Effects of different treatments on mineral element contents in leaves
综合分析图6、7、8、9中处理1土壤、叶片中矿质元素含量的变化,结果表明,处理1 土壤中氮、有效磷、速效钾、有效铁、有效锌、有效铜、有效锰的含量均升高,叶片中仅活性铁的含量升高。
根据处理1 土壤pH 植和各矿质元素含量的变化,对它们之间的相关性进行了分析。土壤pH植与土壤有效铁、有效磷、有效锰的含量呈显著负相关,土壤氮含量与土壤有效铁、有效锰的含量呈显著正相关,土壤磷含量与土壤有效铁、速效钾、有效锰的含量呈显著正相关,土壤速效钾含量与土壤有效磷、有效铜、有效锰的含量呈显著正相关,土壤中有效铁含量与土壤有效锰含量呈极显著正相关,与土壤氮、有效磷、有效锌的含量呈显著正相关(表3)。
表3 处理1 土壤pH 值及各矿质元素含量的相关性分析
Table 3 Correlation analysis of soil pH and mineral element contents in treatment 1
矿质元素和pH Mineral element and pH有效铁Available iron pH植pH value氮Nitrogen有效磷Available phosphorus速效钾Rapidly available potassium总铁Total iron有效锌Available zinc有效铜Available copper pH植pH value-0.919**氮Nitrogen 0.883*有效磷Available phosphorus 0.826*速效钾Rapidly available potassium 0.808总铁Total iron有效锌Available zinc有效铜Available copper有效锰Available Mn 0.458 0.819*0.567 0.930**-0.738-0.968**0.701-0.885*0.645 0.902*-0.299 0.189 0.127-0.617 0.739 0.513-0.740 0.316 0.786-0.966**0.856*0.961**0.383 0.721 0.908*0.896*0.561 0.238 0.199 0.546 0.692 0.713
树体养分失调与土壤理化性质有着较大关联,存在叶片缺素黄化问题的土壤多为强碱性或强酸性土壤,土壤pH植偏低或偏高均可影响土壤中一些矿质养分的有效态含量,使植物不能有效吸收土壤中矿质养分,从而表现缺素黄化现象[8]。石灰性土壤中有效Fe、有效Mn、有效Zn 等微量元素非常容易缺乏[9-10]。本文研究结果中黄化树和正常树土壤pH植均偏碱,高于8.0,差异不显著,说明高pH 植土壤更易导致树体黄化,但不是引起红酥蜜树体黄化的直接原因,吴自然等[11]的研究结果也证实了这一观点。红酥蜜黄化树土壤中的有效磷、有效铁、有效锌、有效铜、有效锰的含量始终低于正常树,说明良好的土壤理化性状是梨树健康生长的首要保障。
全铁含量不能正确反映树体铁营养水平[5,11-13],缺铁通常不是由土壤中铁含量低引起的,而是由铁在根域土壤中的可利用性低导致的。一般来讲,碱性土壤pH 植在7.5 以上时,可溶性Fe2+离子的浓度会非常低,从而导致梨树根系铁吸收困难。本研究结果中黄化树和正常树土壤全铁的含量差异不显著,说明试验园土壤中并不缺铁。对3 个处理土壤中矿质元素含量的变化综合分析得出,土壤有效铁的缺乏是红酥蜜树体黄化的根本原因。杨玉爱等[14]认为锰能调节植物组织内二价铁和三价铁之间的转化,促进叶绿素的合成。笔者在本研究中得出土壤中有效铁含量与土壤有效锰含量呈极显著正相关,一定程度上印证了杨玉爱等[14]的观点。
根据处理1 土壤中各矿质元素含量的变化,分析得出土壤中大量元素氮、有效磷含量与微量元素有效铁、有效锰的含量呈显著正相关,土壤中大量元素速效钾含量与土壤有效磷、有效铜、有效锰的含量呈显著正相关,土壤中微量元素有效锰的含量与土壤有效铁、氮、有效磷、速效钾的含量均呈显著正相关,说明土壤中微量元素对大量元素的吸收有重要的作用,今后在树体的施肥管理中应重视微量元素的补充。
矫治缺铁性的树体黄化除了改良土壤、平衡施肥、合理灌水等技术措施之外,主要应加强盐碱地补充螯合铁。常见的EDTA(Ethylene diaminetetraacetic acid,乙二胺四乙酸)螯合铁,只能在pH植为7以下的环境中保持稳定。本试验中黄化矫治处理1和处理2 均能显著提高土壤中有效铁的含量,对治疗梨树生理缺铁性黄化效果显著,处理后10 d 黄化叶片明显转绿。处理1必益铁中的HBED铁具备独特的立体化学结构,稳定常数为K=10~36,与血红蛋白相当,在pH植高达12的碱性环境下有效性不变,仍然能被作物吸收利用。处理2 福绿来中含有EDDHA[Ethylene Diamino Di(o-hydroxyfenoxy)acetic,乙二胺二邻羟苯基乙酸]和EDDHSA[Ethylene Diamino Di(o-hydroxy-p-Sulfonil)Acetic,乙二胺二邻羟基-对磺酰基乙酸]螯合铁,可在pH植为4~10的范围内保持稳定,结合铁保护铁,增强了铁的溶解性,能帮助植物在pH植为4~10范围内对铁的吸收。
处理1 必益铁与微晶C 组合使用,可显著提高土壤中有效铁和有效磷、有效铁、有效铜、有效锰的含量,显著降低土壤pH植。处理2福绿来与海藻素组合使用,可显著提高土壤中有效铁含量,在3个处理中果实品质最好。处理3土壤调理剂可显著降低土壤pH植,显著提高土壤速效钾、有效锌、有效锰含量,但对矫治梨树黄化没有效果。综合认为,梨树生理性缺铁黄化,可用处理1和处理2进行矫治。
红酥蜜是由生理性缺铁引起的黄化,用必益铁+微晶C 和福绿来+海藻素进行黄化矫治效果显著。黄化树土壤中有效铁、有效磷、有效锌和有效铜含量显著低于正常树。土壤中有效铁含量与土壤中氮、有效锰、有效磷、有效锌的含量呈显著正相关。
[1] 于绍夫,曲复宁,滕世杨,刘巧华,霍常芬,战克治.苹果缺铁黄叶病防治的初步研究[J].山西果树,1983(4):35-39.YU Shaofu,QU Funing,TENG Shiyang,LIU Qiaohua,HUO Changfen,ZHAN Kezhi. Preliminary study on control of iron deficiency yellow leaf disease of apple[J]. Shanxi Fruits,1983(4):35-39.
[2] 周葱.缺铁黄化对‘砀山酥梨’叶片光合特性、氮代谢相关酶活性及基因表达的影响[D].合肥:安徽农业大学,2015.ZHOU Cong.Effects of iron stress on photosynthetic characteristics,related enzyme activity and genes expression of nitrogen metabolism in‘Dangshansuli’leaves[D]. Hefei:Anhui Agricultural University,2015.
[3] 黄乐平,陈霞,王成,阿力浦·克然木,李世强,刘永杰,宴佩霞.库尔勒香梨黄化病机理研究[J].新疆农业科学,2004,41(1):41-45.HUANG Leping,CHEN Xia,WANG Cheng,ALIPU·Keranmu,LI Shiqiang,LIU Yongjie,YAN Peixia. Study on etiolation mechanism of Korla pear[J]. Xinjiang Agricultural Sciences,2004,41(1):41-45.
[4] EL-JENDOUBI H,VÁZQUEZ S,CALATAYUD Á,VAVPETI P,VOGEL-MIKUK,PELICON P,ABADÍA J,ABADÍA A,MORALES F. The effects of foliar fertilization with ironsulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics[J]. Frontiers in Plant Science,2014,5:2.
[5] 王光州,韩慧韬,车金鑫,张向东,翟丙年.不同铁制剂对石灰性土壤条件下猕猴桃缺铁黄化的矫治效果[J]. 果树学报,2011,28(1):61-65.WANG Guangzhou,HAN Huitao,CHE Jinxin,ZHANG Xiangdong,ZHAI Bingnian. Effect of different Iron preparation on iron deficiency chlorosis of kiwifruit in calcareous soil[J]. Journal of Fruit Science,2011,28(1):61-65.
[6] 刘文国,赵强,王锋,马志锋,王智民.猕猴桃园土壤养分环境状况的研究[J].中国农学通报,2017,33(25):88-92.LIU Wenguo,ZHAO Qiang,WANG Feng,MA Zhifeng,WANG Zhimin. Study on soil nutrient environment of kiwifruit orchard[J]. Chinese Agricultural Science Bulletin,2017,33(25):88-92.
[7] BRIAT J F,DUBOS C,GAYMARD F. Iron nutrition,biomass production,and plant product quality[J]. Trends in Plant Science,2015,20(1):33-40.
[8] 周厚基,仝月澳.苹果树缺铁失绿研究的进展Ⅱ:铁逆境对树体形态及生理生化作用的影响[J]. 中国农业科学,1987,21(4):46-50.ZHOU Houji,TONG Yueao.Research progress of Iron deficiency chlorosis in apple tree Ⅱ:Effects of iron stress on tree morphology,physiological and biochemical effects[J].Scientia Agricultura Sinica,1987,21(4):46-50.
[9] 高艳菊,亢龙飞,褚贵新.不同聚合度和聚合率的聚磷酸磷肥对石灰性土壤磷与微量元素有效性的影响[J].植物营养与肥料学报,2018,24(5):1294-1302.GAO Yanju,KANG Longfei,CHU Guixin. Effects of different polymerization degrees and polymerization rates on the availability of phosphorus and trace elements in calcareous soil[J].Journal of Plant Nutrition and Fertilizer Science,2018,24(5):1294-1302.
[10] 阮科.重庆高换杂柑园叶片缺素黄化调查及原因分析[D].重庆:西南大学,2019.RUAN Ke.Investigation and analysis on the etiolation of chlorophyll deficiency in leaves of Chongqing Gaofanza orchard[D].Chongqing:Southwest University,2019.
[11] 吴自然,侯炤琪,黄展飞,倪琳琳,陆小龙,韦军.梨铁营养评价指标筛选及活性铁离子形态探讨[J].扬州大学学报(农业与生命科学版),2016,37(2):106-110.WU Ziran,HOU Zhaoqi,HUANG Zhanfei,NI Linlin,LU Xiaolong,WEI Jun.Sifting the evaluation indicators of Fe nutritional status and exploring active Fe ionic forms in pear trees[J].Journal of Yangzhou University (Agriculture & Life Science Edition),2016,37(2):106-110.
[12] 姚晓芹,马文奇,刘东臣,楚建周.果树缺铁性黄化植株诊断方法的研究进展[J].北方果树,2005(1):1-3.YAO Xiaoqin,MA Wenqi,LIU Dongchen,CHU Jianzhou. Advances in diagnosis of iron deficiency chlorosis in fruit trees[J].Northern Fruits,2005(1):1-3.
[13] 任玉芳,蒋乐,翟丙年.大棚油桃缺铁黄化的诊断与矫治[J].西北农林科技大学学报,2009,37(6):99-104.REN Yufang,JIANG Le,ZHAI Bingnian.Diagnosis and correction of iron deficiency chlorosis in nectarine[J]. Journal of Northwest A&F University,2009,37(6):99-104.
[14] 杨玉爱,吕滨. 柑橘的铁素营养诊断方法的探讨[J]. 土壤通报,1988(2):74-77.YANG Yuai,LÜ Bin. Study on the diagnostic methods of iron nutrition in citrus [J]. Chinese Journal of Soil Science,1988(2):74-77.
Research on yellowing causes and correction efficacy in a new red-peeled pear variety Hongsumi