盐碱胁迫对砂糖橘叶片水分亏缺、气体交换及矿质元素微域分布的影响

郭雁君1,2,吉前华1,2*,杜鹏飞2,尚荷斌2,钟雅玲2

1肇庆学院果树研究所,广东肇庆 526061;2肇庆学院生命科学学院,广东肇庆 526061)

摘 要:【目的】探究盐碱胁迫下砂糖橘(Citrus reticulata‘Shatangju’)耐盐生理生态特性,为石灰性土壤和盐碱土地区砂糖橘引种栽培和土壤管理提供科学支撑。【方法】以3年生枳壳[Poncirus trifoliate(L)Raf.]砧砂糖橘植株为试材,以轻质CaCO3、NaHCO3、NaCl分别模拟石灰性土壤、碱土、盐土的主要胁迫成分,设计在基质中分别添加0.3%、0.7%两种水平,以不加盐碱的植株为对照,在温室中栽培90 d,测试分析不同处理植株叶片水分状况、气体交换指标以及8种主要矿质元素微域分布和平衡的差异。【结果】(1)盐碱胁迫下,砂糖橘叶片相对含水量(RWC)降低、水分饱和亏(WSD)增大,差异随盐碱胁迫强度增大、处理时间延长而加大,受盐碱胁迫种类影响大。(2)盐碱胁迫下,砂糖橘叶片叶绿素含量(Chl C)、光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)明显降低,降低幅度随胁迫时间延长而加大,不同种类盐碱胁迫下差异大,总体上与WSD的响应相反。(3)盐碱胁迫下90 d,砂糖橘叶片各组织的细胞中8种矿质元素相对含量均发生显著变化。其中,CaCO3胁迫下,叶片栅栏组织细胞中S、Cl、Ca元素相对含量显著升高,Na、Mg、P、K、Fe元素相对含量显著降低;NaHCO3、NaCl胁迫下,栅栏组织细胞中Na、S、Cl元素相对含量显著升高,Mg、P、K、Ca、Fe元素相对含量显著降低。(4)盐碱胁迫下,砂糖橘叶片各组织的细胞中矿质元素含量平衡显著改变,以CaCO3胁迫下变化最小、NaCl胁迫下变化最大,韧皮部细胞中的变化明显大于木质部细胞中、海绵组织细胞中的变化明显大于栅栏组织细胞中,Na、Cl、K、Ca等4种元素的相对含量及K/Na、K/Cl、Ca/k、Ca/Na等4种平衡关系显著改变。【结论】砂糖橘植株对NaCl胁迫敏感,其次是对NaHCO3胁迫,CaCO3含量达0.7%可产生显著胁迫。盐碱胁迫可导致砂糖橘叶片发生重度水分亏缺,显著抑制叶片光合作用,严重破坏叶片中主要矿质元素微域分布、含量平衡和离子稳态。砂糖橘引种栽培及果园管理中应重视园地土壤化学性质及改良。

关键词:砂糖橘;CaCO3胁迫;NaHCO3胁迫;NaCl胁迫;X-射线能谱分析;矿质营养平衡

盐胁迫是世界范围内影响植物地理分布、形态特征、生长发育和经济产量及品质的重要非生物胁迫[1-2]。柑橘是芸香科柑橘亚科(Aurantioideae)植物的统称,是世界上为数不少的国家大宗栽培的果树作物种类[3-5]。目前,国内外对柑橘耐盐生理已有一定研究,涉及盐胁迫下柑橘生长响应和光合生理[6-9]、柑橘砧木或诱导的柑橘愈伤组织的耐性[10-13]、柑橘体内盐分离子含量和矿质营养状况[14-16]以及柑橘活性氧代谢和抗氧化物质积累特性[17-19]。这些研究表明,柑橘耐盐性因种质不同而有较大差异,总体上柑橘对盐胁迫敏感,盐胁迫显著抑制柑橘生长和生理;柑橘对盐胁迫最敏感的基因型体内积累高浓度Na+和Cl-并产生毒害效应;盐胁迫显著影响柑橘植株对其他矿质元素的吸收,从而使体内元素含量显著失衡;糖类、醇类和氨基酸的积累有助渗透调节,酶促系统和非酶类氧化剂能降低活性氧伤害,二者在柑橘对盐胁迫的适应中起重要作用。

近年的研究发现,柑橘6 个多胺氧化酶(polyamine oxidase,PAO)基因中的CsPAO4(定位于质外体,以亚精胺和精胺为底物)参与H2O2产生,引起盐胁迫下柑橘幼苗氧化损伤,下调PAO 基因,参与多胺末端分解代谢可能是提高柑橘耐盐性的一种途径[20];50 mg·L-1腐胺(putrescine,Put)、250 mg·L-1多效唑(paclobutrazol,PBZ)单独或联合处理的柑橘砧木幼苗在盐胁迫下具有较高的抗氧化酶活性、脯氨酸含量和K+、Ca2+等矿质含量,减少Na+和Cl-在根和叶片中的积累,降低膜损伤指数[21];接种球囊霉(Glomus mosseaeG. intraradicesG. hoi)等丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)是盐胁迫下提高柑橘产量的一种实用方法,可改善盐胁迫下柑橘植株生长和土壤结构[22-24],显著促进柑橘植株胁迫小蛋白(CaSISP)基因的表达、诱导参与水分和低分子有机物运输的水通道蛋白(AQPs)[25],从而提高细胞膜的透水性、刺激其水分运输。但是,迄今对柑橘耐盐生理的研究主要针对中性盐(NaCl)胁迫,而针对碱性盐(CaCO3、NaHCO3)胁迫的研究甚少,尚未见有盐分离子微域分布特性的报道,相关生理特性尚不清楚。以氯化钠(NaCl)、硫酸钠(Na2SO4)为代表的中性盐,以碳酸钠(Na2CO3)、碳酸氢钠(NaHCO3)为代表的碱性盐,分别是盐土、碱土对植物产生胁迫的主要化学组分。石灰性土壤富含的碳酸钙(CaCO3)是对其上生长的植物产生胁迫的主要化学组分,化学性质属碱性盐。

砂糖橘(Citrus reticulata‘Shatangju’)原产地为广东肇庆[26-27],目前是华南地区栽培面积最大、产量最多的柑橘品种[28-29]。由于其优质、早果、丰产,全国有不少地方引种栽培砂糖橘,涉及的园地土壤化学类型和立地条件多样,包括滨海盐土、次生盐渍化土壤及内陆的石灰质土壤。开展砂糖橘果园土壤化学生态研究极有必要,特别是栽培中对盐碱胁迫的适应性。笔者以枳壳[Poncirus trifoliate(L.)Raf.]砧砂糖橘幼树为研究材料,把碱性盐纳入耐盐性研究范围,以轻质CaCO3、NaHCO3、NaCl 分别模拟石灰质土壤、碱土、盐土的主要胁迫成分,分别设计基质中添加0.3%、0.7%两种水平,进行较长时间的栽培实验,测试分析叶片水分状况和气体交换响应特性以及对叶片中矿质元素微域分布和平衡的影响,以期准确认识砂糖橘的土壤化学生态生理,为石灰质土壤和盐碱土地区的引种栽培和土壤管理提供科学支撑。

1 材料和方法

1.1 材料与处理

选择枳壳砧18 月龄砂糖橘嫁接苗,1 月下旬栽植于高40 cm、上口直径35 cm的陶瓷盆中。栽培基质为80%(w)普通耕作土+15%草炭+5%河沙,拍碎、混匀、过筛。盆栽基质中含有机质1.72%、速效氮55.6 mg·kg-1、速效磷32.5 mg·kg-1、速效钾115.8 mg·kg-1,pH 6.5。每盆基质质量相同。在温室中栽培18 个月,期间视季节和天气情况,每周浇水1~2 次、每次每盆(株)1000 mL,每30 d 施复合肥1 次、每次每株5 g。盆底放置塑料托盘。温室内气温高于30 ℃,湿帘降温系统自动启动。翌年7 月下旬(嫁接苗3年生),选择生长势及树体大小相当的植株进行盐碱胁迫。处理前7 d暂停浇水。

共设计7种盐碱胁迫处理,分别是:(1)对照(不加盐碱);(2)0.3%CaCO3(轻质,微粉,粒径1µm,下同);(3)0.7% CaCO3;(4)0.3% NaHCO3;(5)0.7%NaHCO3;(6)0.3% NaCl;(7)0.7% NaCl。每处理3株,3 次重复,参试植株共63 株,处理后栽培90 d。CaCO3、NaHCO3、NaCl均为化学纯(国药集团产品),添加量以盆中基质干质量为基础,充分溶解在1000 mL自来水中后缓缓浇入盆中,1 h内偶有渗漏至托盘中的浇灌液返浇入盆。处理后的水分管理与之前相同,30、60 d 时每株各施复合肥7 g。至处理90 d时进行最后一轮分析测试。

1.2 测定方法

叶片相对含水量(the relative water content,RWC)及水分饱和亏(water saturation deficiency,WSD)测定:于处理0、30、60、90 d,按株取树冠中部外围成龄叶(枝条顶端下部第4~5叶)3片,擦净表面污物,用饱和质量法测定叶片RWC,RWC(%)=(Wf-Wd)/(Wt-Wd)×100。式中:Wf:叶片自然鲜质量;Wt:叶片被水分饱和后的质量;Wd:叶片恒干质量。以OLABO型电子天平(0.000 1 g)称质量。每处理每样取2片完整叶片,3次重复。WSD/%=100-RWC。

叶绿素提取及含量测定。于处理0、30、60、90 d时,按株取树冠中部外围成龄叶(枝条顶端下部第4~5 叶)3 片,擦净表面污物,去除中脉后剪碎,称取混合样品0.2 g,3份,用95%乙醇浸提,以UV-6300B型紫外可见分光光度计测定A665、A649的植,分别计算叶绿素a、叶绿素b 浓度(Ca、Cb,mg·L-1)。叶绿素浓度为Ca、Cb之和。叶绿素含量(mg·g-1)=(叶绿素浓度×提取液体积×稀释倍数)/样品鲜质量。

叶片气体交换参数测定:于处理0、30、60、90 d,从不同处理的砂糖橘树冠中部外围按植株各选取3片成龄叶进行,用LI-6400 XT光合仪测定叶片净光合速率(Pn,μmol·m-2·s-1)、蒸腾速率(Tr,mmol·m-2·s-1)和气孔导度(Gs,mmol·m-2·s-1)。测定条件:温度为20~25 ℃,光强为800µmol·m2·s-1),叶室CO2浓度为400 µmol·mol-1,流速为500 μmol·s-1。测定时间为上午9:30—11:30、下午2:00—4:00,各处理的测试结果取上午、下午的平均植。

细胞中矿质元素相对含量测定:于处理90 d,从各处理中选择株高、冠幅、叶量、叶色具代表性的植株,取树冠中部外围叶片,用锋利刀片切割砂糖橘叶片主脉基部的部分作为叶样,锡箔包裹后投入液氮中速冻,冷冻真空干燥,在SU8010 型场扫描电子显微镜下观察,δ 型X-射线能谱仪,最大加速电压15.00 keV,样品倾斜角0°,样品与探针间的角度为35°,设备附带的标样程序计算机判断各峰植代表的元素种类,自动计算出峰谱中Na、Mg、P、S、Cl、K、Ca、Fe 等8 种元素分别占细胞中这些元素总质量的百分数[30-31]。测试分析的砂糖橘叶片微区为栅栏组织、海绵组织、木质部和韧皮部细胞(图1)。每处理分析3个样品,每组织分析2个微区。矿质元素平衡计算分析K/Na、K/Cl、Ca/k、Ca/Na、Na/Cl 等10 种关系的含量比植差异。

图1 砂糖橘叶片表面(A)及横断面(B)结构扫描电镜图
Fig.1 SEM images of surface(A)and cross-section(B)structures of Shatangju mandarin leaf

1.3 数据处理

数据采用Microsoft Excel软件进行数据分析和作图。试验中所获得的数据以(平均数±标准差)表示,各处理平均数间的差异显著性用Duncan’s多重比较法检验。同一指标的数植,其后标记的小写字母不同,表示它们之间差异显著(p <0.05)。

2 结果与分析

2.1 对砂糖橘叶片水分亏缺的影响

从7 月底至10 月底,砂糖橘对照植株叶片水分状况呈相对含水量(RWC)升高、水分饱和亏(WSD)减小的趋势,但增大或减小的幅度较小,不同时期的无显著差异。与对照相比,盐碱胁迫下砂糖橘叶片RWC 降低、WSD 增大,差异随胁迫强度增大、处理时间延长而加大,至90 d时达到最大,但主要受盐碱胁迫种类支配。在CaCO3 胁迫下,叶片RWC 均与同时期对照植株无显著差异;NaHCO3 胁迫下,30 d时叶片RWC 与对照无显著差异,60 d 时0.7%NaHCO3胁迫下显著低于对照,至90 d 时2 种胁迫强度下的RWC 之间差异显著且均显著低于对照;NaCl 胁迫下,所有测试时期的叶片RWC 均显著低于同期对照,且仅胁迫30 d 时2 种胁迫强度间及与对照间无显著差异;胁迫90 d 时,叶片RWC 降低幅度依0.3% CaCO3、0.3% NaHCO3、0.3% NaCl、0.7%CaCO3、0.7% NaHCO3、0.7% NaCl 胁迫的顺序分别为3.2%、7.6%、9.6%、13.8%、15.5%、22.5%。盐碱胁迫下,砂糖橘叶片WSD在不同处理间及同种胁迫性质的2 种强度间的差异性较RWC 明显更大:0.3%CaCO3、0.3% NaHCO3、0.3% NaCl、0.7% CaCO3、0.7% NaHCO3、0.7% NaCl 胁迫90 d,相应处理的植株叶片WSD 分别较对照增大46.2%、109.2%、138.5%、198.5%、223.1%、323.1%;0.7% CaCO3胁迫与对照、0.7% CaCO3 胁迫 与0.3% NaHCO3 胁迫、0.7%NaHCO3胁迫与0.3%NaCl 胁迫间的水分状况相当,以0.7% NaCl 胁迫下叶片WSD 最大、水分状况最劣(表1)。

表1 盐碱胁迫对砂糖橘叶片相对含水量(RWC)和水分饱和亏(WSD)的影响
Table 1 The effects of saline-alkali stress on leaf relative water content(RWC)and water saturation deficit(WSD)of Shatangju mandarin plants

注:Ⅰ、Ⅱ分别表示栽培基质中所添加的相应的盐碱量为0.3%、0.7%(w);同一生理指标的数字,标记的小写字母不同表示它们之间的差异达显著水平(p <0.05)。表2、表3 同。
Note:Ⅰand Ⅱrespectively indicated that the corresponding amount of salt or alkali added to the cultivation substrate was 0.3%and 0.7%(w).The numbers followed different lowercase letters indicated that the difference between themwas significant(p <0.05).The same as Table 3&Table 2.

处理Treatment相对含水量Relative water content/%水分饱和亏Water saturation deficit/%0 d 91.8±3.0 a 91.8±3.0 a 91.8±3.0 a 91.8±3.0 a 91.8±3.0 a 91.8±3.0 a 91.8±3.0 a 30 d 60 d 90 d 30 d 60 d 90 d 6.5±2.0 h 9.5±2.5 gh 13.6±4.0 defgh 15.5±3.5 cdefg 19.4±5.0 bcd 21.0±7.5 bc 27.5±6.0 a对照Control CaCO3胁迫CaCO3stress NaHCO3胁迫NaHCO3 stress NaCl 胁迫NaCl stressⅠⅡⅠⅡⅠⅡ92.2±2.5 a 91.6±1.8 a 90.2±2.5 abc 89.4±2.0 abc 87.5±3.5 abcde 84.6±4.2 bcdef 80.8±4.0 efg 92.3±2.0 a 91.1±2.0 ab 88.9±3.5 abcd 86.3±3.0 abcde 83.2±3.6 cdef 82.2±5.0 def 75.3±5.5 gh 93.5±2.0 a 90.5±2.5 ab 86.4±4.0 abcde 84.5±3.5 bcdef 80.6±5.0 efg 79.0±7.5 fg 72.5±6.0 h 0 d 8.2±2.5 h 8.2±2.5 h 8.2±2.5 h 8.2±2.5 h 8.2±2.5 h 8.2±2.5 h 8.2±2.5 h 7.7±3.0 h 8.4±1.8 gh 9.8±2.5 fgh 10.6±2.0 fgh 12.5±3.5 defgh 15.4±4.2 cdefg 19.2±4.0 bcd 7.8±2.0 h 8.9±2.0 gh 11.1±3.5 efgh 13.7±3.0 defgh 16.8±3.6 cdef 17.8±5.0 cde 24.7±5.5 ab

2.2 对砂糖橘叶片叶绿素含量和气体交换参数的影响

从7月底至8月底,砂糖橘对照植株叶片叶绿素含量、光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)表现为升高的趋势,在此后的2 个月里呈逐渐降低的趋势,但升高或降低的幅度较小,不同时期的各项参数之间无显著差异。与对照相比,盐碱胁迫下,相应处理的砂糖橘植株叶片叶绿素含量降低、气体交换作用明显受到抑制,叶绿素含量、PnTrGs降低幅度随胁迫时间延长而加大,对不同种类胁迫的响应差异大,总体上与水分状况的响应相似,以叶绿素含量和Pn的响应更敏感。盐碱胁迫显著影响砂糖橘叶片的光合生理和水分代谢(表2,表3)。

表2 盐碱胁迫对砂糖橘叶片叶绿素含量和光合速率的影响
Table 2 The effects of saline-alkali stress on leaf chlorophyll content and photosynthetic rate of Shatangju mandarin plants

处理Treatment对照Control CaCO3胁迫CaCO3 tress NaHCO3胁迫NaHCO3stress NaCl胁迫NaCl stress叶绿素含量Leaf chlorophyll content/(mg·dm-2) 光合速率Photosynthetic rate/(μmol·m-2·s-1)0 d 6.48±0.25 ab 6.48±0.25 ab 6.48±0.25 ab 6.48±0.25 ab 6.48±0.25 ab 6.48±0.25 ab 6.48±0.25 ab 30 d 60 d 90 d 30 d 60 d 90 dⅠⅡⅠⅡⅠⅡ6.69±0.40 a 6.54±0.35 ab 6.35±0.42 abc 6.18±0.29 abc 5.05±0.39 efg 5.79±0.34 bcd 4.87±0.36 fg 6.35±0.59 abc 6.18±0.46 abc 5.64±0.49 cde 5.79±0.52 bcd 4.37±0.46 gh 4.83±0.50 fg 3.92±0.43 hi 6.05±0.63 abc 5.78±0.35 bcd 5.05±0.40 efg 5.12±0.33 def 3.65±0.28 ij 4.15±0.52 hi 3.06±0.25 j 0 d 7.45±0.53 bcdef 7.45±0.53 bcdef 7.45±0.53 bcdef 7.45±0.53 bcdef 7.45±0.53 bcdef 7.45±0.53 bcdef 7.45±0.53 bcdef 8.58±0.62 a 8.35±0.35 ab 7.72±0.48 abcde 7.89±0.32 abcde 7.05±0.54 defg 7.02±0.45 efg 5.45±0.38 ijk 8.2±0.65 ab 8.06±0.56 abcd 6.97±0.75 efg 7.12±0.58 cdefg 5.23±0.65 jkl 5.84±0.64 hij 4.29±0.47 l 8.10±0.49 abc 7.52±0.50 bcdef 6.23±0.76 ghi 6.62±0.36 fgh 4.33±0.49 l 4.67±0.35 kl 3.13±0.36 m

表3 盐碱胁迫对砂糖橘叶片蒸腾速率和气孔导度的影响
Table 3 The effects of saline-alkali stress on leaf transpiration rate and stomatal conductance of Shatangju mandarin plants

处理Treatment对照Control CaCO3胁迫CaCO3 stress NaHCO3胁迫NaHCO3stress NaCl胁迫NaCl stress蒸腾速率Transpiration rate/(mmol·m-2·s-1) 气孔导度Stomatal conductance/(mmol·m-2·s-1)0 d 4.18±0.45 a 4.18±0.45 a 4.18±0.45 a 4.18±0.45 a 4.18±0.45 a 4.18±0.45 a 4.18±0.45 a 30 d 60 d 90 d 30 d 60 d 90 dⅠⅡⅠⅡⅠⅡ3.92±0.52 ab 4.05±0.32 ab 3.78±0.28 abc 3.65±0.40 abcd 3.08±0.51 defgh 2.98±0.20 efghi 2.56±0.20 hij 3.56±0.34 abcde 3.46±0.23 bcdef 3.15±0.30 cdefgh 3.26±0.25 cdefg 2.54±0.39 hij 2.35±0.22 ijk 1.89±0.35 k 2.89±0.42 fghi 2.78±0.33 ghi 2.65±0.19 ghi 2.55±0.19 hij 1.94±0.28 jk 1.78±25 k 1.07±0.12 l 0 d 0.175±0.010 abc 0.175±0.010 abc 0.175±0.010 abc 0.175±0.010 abc 0.175±0.010 abc 0.175±0.010 abc 0.175±0.010 abc 0.182±0.012 ab 0.193±0.012 a 0.175±0.015 abc 0.164±0.011 bcd 0.153±0.014 de 0.162±0.016 bcd 0.146±0.0152 de 0.178±0.012 abc 0.168±0.012 bcd 0.162±0.017 bcd 0.148±0.012 de 0.125±0.018 fg 0.113±0.013 fgh 0.108±0.010 gh 0.163±0.005 bcd 0.159±0.006 cd 0.146±0.010 de 0.132±0.005 ef 0.104±0.009 hi 0.088±0.011 i 0.056±0.005 j

由表2 可见,盐碱胁迫下砂糖橘叶片叶绿素含量和Pn的响应特点几乎一致:胁迫30、60 d,0.3%CaCO3、0.7%CaCO3、0.3%NaHCO3胁迫下各自叶片叶绿素含量和Pn低于对照但与对照无显著差异,0.7%NaHCO3、0.3%NaCl、0.7%NaCI胁迫下各自叶片叶绿素含量、Pn显著低于同期对照;胁迫90 d,除0.3%CaCO3胁迫外,其余盐碱胁迫下叶绿素含量和Pn均显著低于对照,0.3%CaCO3、0.7%CaCO3、0.3%NaHCO3、0.7%NaHCO3、0.3%NaCl、0.7%NaCl胁迫下叶绿素含量较对照分别降低4.5%、16.5%、15.4%、39.7%、31.5%、49.4%,Pn 较对照分别降低7.2%、23.1%、18.3%、46.5%、42.3%、61.4%,盐碱胁迫下叶片Pn 的降低幅度较叶绿素含量的更大;同时,CaCO3、NaHCO3、NaCl 胁迫内部2 种强度之间叶片叶绿素含量、Pn的差异均达显著水平,再次表明0.7%CaCO3胁迫与0.3% NaHCO3胁迫、0.7% NaHCO3胁迫与0.3%NaCl 胁迫效应相当而以0.7%NaCl 胁迫的效应最强。

由表3 可见,胁迫30、60、90 d,0.3% CaCO3、0.7% CaCO3、0.3% NaHCO3胁迫下砂糖橘叶片Tr的植小于对照但与对照无显著差异,0.7% NaHCO3、0.3%NaCl、0.7%NaCl 胁迫下各自叶片Tr的植显著小于同期对照;叶片Gs对盐碱胁迫的响应较Tr敏感、降低幅度更大,CaCO3胁迫下各时期的植与对照无显著差异,NaHCO3、NaCl 胁迫下2 种胁迫强度间以及与对照间的差异均达显著水平;至90 d,0.3%Ca-CO3、0.7% CaCO3、0.3% NaHCO3、0.7% NaHCO3、0.3%NaCl、0.7%NaCl 胁迫下叶片Tr分别较对照降低3.8%、8.3%、11.8%、32.9%、38.4%、63.0%,叶片Gs分别较同期对照降低2.5%、10.4%、19.0%、36.2%、46.0%、65.6%。

2.3 对砂糖橘叶片细胞中矿质元素含量的影响

Mg、P、K、Ca、Fe 元素是植物的重要营养元素,Na、S、Cl 元素在植物生命活动中具重要作用,其中Na、Cl元素与植物耐盐性密切相关。由表4可见,正常土壤生境中的砂糖橘植株,无论是在叶片的何种微区中,这8 种矿质元素的相对含量由高到低的顺序均为:Ca、K、Mg、S、Na、Cl、P、Fe,盐碱胁迫下栽培90 d后这些元素的含量发生显著变化。

表4 CaCO3、NaHCO3、NaCl 胁迫下砂糖橘植株叶片细胞中矿质元素相对含量差异
Table 4 Differences in the relative content of mineral elements in leaf cells of Shatangju mandarin saplings under CaCO3,NaHCO3,and NaCl stress

注:Ⅰ、Ⅱ分别表示栽培基质中所添加的相应的盐碱量为0.3%、0.7%(w);同种叶片组织和矿质元素的数植,所标记的小写字母不同表示它们之间的差异达显著水平(p <0.05)。表5 同。
Note:Ⅰand Ⅱrespectively indicated that the corresponding amount of salt or alkali added to the cultivation substrate was 0.3% and 0.7%(w).For the same mineral element in the same leaf tisure,the numbers followed different lowercase letters indicated that the difference between themwas significant(p <0.05).The same as Table 5.

叶片区域Leaf area叶脉Vein S矿质元素相对含量Relative content of mineral elements/%Na 5.6±0.3 d 5.1±0.4 d 4.4±0.6 d 15.2±0.7 b 20.9±2.3 a 12.2±0.8 c 21.2±2.1 a 4.7±0.2 d 5.7±0.4 d 6.4±0.5 d 12.7±0.9 b 18.5±1.6 a 10.9±0.6 c 19.8±1.7 a 5.9±0.2 d 4.9±0.3 e 4.0±0.4 e 11.8±0.8 c 19.2±1.0 b 11.7±0.7 c 21.7±1.1 a 5.9±0.3 d 4.9±0.4 de 3.6±0.2 e 11.8±0.6 c 19.3±1.3 b 12.5±0.7 c 22.5±1.8 a Fe 1.8±0.1 a 1.3±0.2 bc 0.7±0.1 e 1.6±0.1 a 1.0±0.3 cd 1.3±0.1 b 0.8±0.1 de 1.4±0.1 a 1.1±0.2 b 0.9±0.1 c 1.2±0.2 ab 0.8±0.1 c 1.1±0.2 b 0.5±0.1 d 2.3±0.1 a 1.6±0.1 b 1.0±0.1 d 1.7±0.1 b 1.1±0.3 d 1.4±0.1 c 0.4±0.1 e 2.0±0.1 a 1.3±0.0 bc 0.6±0.1 d 1.4±0.2 b 0.6±0.4 d 1.1±0.1 c 0.7±0.1 d Mg 14.5±0.4 a 11.0±0.7 b 6.3±0.4 d 10.9±1.1 b 9.8±0.9 b 10.3±0.7 b 8.3±0.9 c 11.3±0.9 a 8.7±0.6 b 4.2±0.4 e 7.7±0.5 c 5.2±0.7 d 6.1±0.4 d 3.6±0.5 e 12.3±0.7 a 10.4±0.6 b 8.3±0.8 c 9.9±0.6 b 5.1±0.3 d 9.9±0.5 b 5.4±0.5 d 9.7±0.4 a 6.5±0.5 b 3.5±0.4 d 7.2±0.6 b 4.9±0.7 c 7.2±0.6 b 3.2±0.1 d K P木质部Xylem韧皮部Phloem叶肉Mesophyll栅栏组织Palisade tissue海绵组织Sponge tissue处理Treatment对照Control CaCO3胁迫CaCO3stress NaHCO3胁迫NaHCO3stress NaCl胁迫NaCl stress对照Control CaCO3胁迫CaCO3stress NaHCO3胁迫NaHCO3stress NaCl胁迫NaCl stress对照Control CaCO3胁迫CaCO3stress NaHCO3胁迫NaHCO3stress NaCl胁迫NaCl stress对照Control CaCO3胁迫CaCO3stress NaHCO3胁迫NaHCO3stress NaCl胁迫NaCl stressⅠⅡⅠⅡⅠⅡ ⅠⅡⅠⅡⅠⅡ ⅠⅡⅠⅡⅠⅡ ⅠⅡⅠⅡⅠⅡ2.1±0.1 a 1.7±0.1 bc 1.0±0.1 d 1.8±0.1 b 1.8±0.4 bc 1.5±0.18 c 1.1±0.1 d 2.6±0.2 a 2.3±0.3 a 1.1±0.1 c 2.3±0.2 a 1.1±0.2 c 2.4±0.2 a 1.5±0.1 b 5.1±0.3 a 4.6±0.2 b 3.3±0.3 d 4.6±0.3 ab 3.1±0.3 d 3.9±0.3 c 2.5±0.2 e 4.8±0.3 a 3.6±0.3 b 2.1±0.5 c 3.6±0.2 b 2.0±0.4 c 3.9±0.2 b 1.4±0.2 d 7.1±0.1 c 7.6±0.4 bc 8.4±0.9 abc 7.4±0.4 bc 8.6±0.9 ab 8.5±0.4 ab 9.5±1.3 a 4.4±0.2 c 5.4±0.4 bc 6.0±0.5 b 6.3±0.4 b 8.6±0.9 a 9.0±0.9 a 9.2±0.4 a 9.3±0.6 c 10.5±0.5 bc 11.6±1.1 b 10.4±0.5 bc 13.5±1.1 a 11.4±0.7 b 14.7±1.0 a 6.6±0.3 d 7.9±0.3 cd 9.1±0.9 bc 7.9±0.6 cd 9.5±1.4 bc 10.9±0.6 b 16.6±1.9 a Cl 5.4±0.2 c 5.6±0.3 c 6.0±0.5 c 6.0±0.3 c 6.4±0.6 c 11.3±1.4 b 13.8±0.7 a 4.4±0.2 e 5.0±0.3 e 6.6±0.7 cd 5.8±0.5 de 7.6±0.8 c 10.3±0.7 b 16.1±1.9 a 4.1±0.4 e 4.4±0.2 de 4.8±0.4 cde 5.1±0.3 cd 5.3±0.4 c 6.8±0.5 b 7.8±0.7 a 4.2±0.2 f 4.9±0.3 ef 5.7±0.5 de 6.7±0.2 d 7.9±0.4 c 9.3±0.4 b 15.3±1.3 a 18.5±0.1 a 17.8±0.7 ab 16.7±1.5 ab 17.6±0.7 ab 16.6±1.8 ab 16.9±0.8 ab 15.9±1.5 b 21.9±2.2 a 16.6±1.1 cd 15.3±0.9 d 20.3±2.4 ab 19.3±0.8 abc 20.7±2.5 ab 18.7±1.2 bc 16.9±0.7 a 15.5±1.1 a 15.0±1.4 a 16.2±1.2 a 15.4±1.1 a 15.4±1.0 a 12.6±1.4 b 18.8±0.6 a 17.3±0.4 ab 15.5±1.3 c 17.8±0.6 a 15.9±1.4 bc 15.7±0.6 bc 11.6±1.3 d Ca 44.9±0.5 c 50.0±1.3 b 56.6±2.4 a 39.6±1.5 d 34.9±1.9 e 38.1±2.4 d 29.5±1.8 f 49.4±0.3 c 55.3±2.7 b 59.6±1.3 a 43.9±1.1 d 38.9±2.6 e 39.6±2.5 e 30.8±1.1 f 44.2±1.7 c 48.2±1.9 b 52.2±1.3 a 40.4±1.0 d 37.3±1.6 ef 39.6±1.5 de 35.0±1.9 f 48.1±2.1 c 53.0±2.3 b 59.8±3.2 a 43.6±2.0 d 39.9±2.6 d 39.6±1.3 d 28.7±2.9 e

由表4可见,砂糖橘对照植株叶片维管束中,韧皮部细胞Na、Mg、P、S、Cl、Fe 元素平均含量依次为4.7%、11.3%、2.6%、4.4%、4.4%、1.4%,比木质部细胞中分别低11.6%、22.1%、23.8%、38.0%、18.5%、22.2%;韧皮部细胞中K、Ca 元素平均含量依次为21.9%、49.4%,比木质部细胞中分别高18.4%、10.0%。CaCO3胁迫下,木质部细胞中S、Cl、Ca元素相对含量升高,其中Ca 元素相对含量显著升高。2种强度胁迫下均与对照有显著性差异;其余6 种元素相对含量均表现为降低的趋势,其中Mg、P、Fe元素显著低于对照且2种强度胁迫间差异显著。

NaHCO3、NaCl胁迫下,砂糖橘植株叶片维管束木质部和韧皮部细胞中Na、S、Cl 元素含量升高,胁迫强度越大升高幅度越大,其中,Na 元素与对照相比显著升高,且2 种强度胁迫间差异显著,NaHCO3胁迫下较NaCl胁迫下升高幅度更大,木质部细胞中平均升高幅度分别为2.223倍、1.982倍,韧皮部细胞中平均升高幅度分别为3.383 倍、2.266 倍;S 元素在韧皮部细胞中的升高幅度显著大于在木质部细胞中,且2 种强度胁迫间的差异性更大,但NaCl 胁迫下升高幅度更大;NaCl胁迫下,木质部、韧皮部细胞中Cl元素相对含量均较对照显著升高,平均升高幅度达1.324倍、2.002倍,在韧皮部细胞中的升高幅度比木质部大0.511 倍,且2 种强度的胁迫间差异显著。

NaHCO3、NaCl胁迫下,砂糖橘植株叶片维管束木质部和韧皮部细胞中其余5种元素含量均发生不同程度的降低,胁迫强度越大降低幅度越大,在韧皮部细胞中的降低幅度大于木质部细胞中,Mg、P、Fe元素的降低幅度大于K、Ca 元素,降低幅度大于40%;K元素含量明显具有稳态性较强,仅0.7%NaCl胁迫下显著低于对照,降低幅度在木质部、韧皮部细胞中分别为14.1%、14.6%;Ca 元素的稳态性明显不如K 元素,NaHCO3、NaCl 胁迫下无论在木质部、韧皮部细胞中其相对含量均显著低于对照,平均降低幅度分别为17.0%、16.2%和24.7%、28.7%。

砂糖橘对照植株叶肉中,栅栏组织、海绵组织细胞中Na、P、Cl 元素相对含量基本相同,栅栏组织细胞中Mg、S 元素含量高于海绵组织细胞中,海绵组织细胞中K、Ca 元素含量高于栅栏组织细胞中,但差异都不大甚至较小。CaCO3胁迫下,栅栏组织、海绵组织细胞中S、Cl、Ca 元素相对含量升高,其中S和Cl 元素在0.7%CaCO3胁迫下显著升高,Ca 元素在0.3%、0.7% CaCO3胁迫下均显著升高,S、Cl、Ca元素在栅栏组织和海绵组织细胞中平均升高幅度依次分别为18.8%和28.8%、12.2%和26.2%、13.6%和17.3%;其余5种矿质元素相对含量普遍较对照显著降低,且降低幅度在2 种组织间同样差异较大:Na、Mg、P、K、Fe 共5 种元素在栅栏组织和海绵组织细胞中平均依次分别为24.6%和28.0%、24.0%和48.5%、22.5%和40.6%、9.8%和12.8%、43.5%和52.5%;以Fe元素含量下降幅度最大,K元素保持稳态的能力明显较强,在栅栏组织细胞中的变化明显小于海绵组织细胞中。

在NaHCO3、NaCl 胁迫下,砂糖橘叶片栅栏组织、海绵组织细胞中8 种矿质元素相对含量的变化明显大于CaCO3胁迫下,但变化趋势基本相同。与对照相比,在NaHCO3、NaCl 胁迫下,Na、S、Cl 元素相对含量显著升高,升高幅度在栅栏组织细胞中平均分别为162.7%、183.1%,162.7%、183.1%,26.8%、78.1%;在海绵组织细胞中升高幅度较在栅栏组织细胞中更大,平均分别为163.6%、196.6%,31.8%、108.3%,73.8%、192.9%;Mg、P、K、Ca、Fe共计5种矿质元素的相对含量显著降低,仅0.3%NaHCO3胁迫下S 元素相对含量升高、K 元素相对含量降低的幅度与对照未达显著水平。其中,NaHCO3胁迫下,Mg、P、K、Ca、Fe元素在栅栏组织和海绵组织细胞中的相对含量平均分别降低39.0%和37.6%、24.5%和41.6%、6.5%和10.4%、12.1%和13.2%、45.6%和50.0%;NaCl胁迫下,Mg、P、K、Ca、Fe元素在栅栏组织和海绵组织细胞中的相对含量平均分别降低50.0%和46.4%、37.3%和44.8%、17.1%和27.4%、15.6%和29.0%、60.9%和55.0%。

2.4 对砂糖橘叶片细胞中矿质元素含量平衡的影响

CaCO3、NaHCO3、NaCl胁迫下,砂糖橘叶片叶脉和叶肉细胞中矿质元素平衡关系发生显著变化,但以CaCO3胁迫下变化最小,NaHCO3、NaCl胁迫下变化比较大,尤其NaCl 胁迫下;韧皮部细胞中的变化明显大于木质部细胞中,海绵组织细胞中的变化大于栅栏组织细胞中,栅栏组织细胞中的变化相对最小;10 种元素含量比植中,Na/Cl、Ca/K、S/P、Mg/Fe总体上显著增大,以Ca/K 增幅最小(CaCO3胁迫下显著增大,NaHCO3、NaCl胁迫下显著减小或保持稳定),以S/P 增幅最大;其余6 种比植关系均显著减小,以K/Na、K/Cl 减幅最大(K/Na 的减幅略大于K/Cl 的,但总体上二者相当),S/Cl、Mg/P 减幅较小。计算分析表明,CaCO3、NaHCO3、NaCl 胁迫下,增幅最大的S/P在叶脉木质部细胞中平均分别增大85.3%、32.4%、132.4%,在叶脉韧皮部细胞中平均分别增大141.2%、223.5%、188.2%,在叶肉栅栏组织细胞中平均分别增大61.1%、80.6%、141.7%,在叶肉海绵组织细胞中平均分别增大132.1%、146.4%、653.6%;减幅最大的K/Na、K/Cl 在叶脉木质部细胞中平均分别减小2.2%、44.1%、64.0%,在叶脉韧皮部细胞中平均分别减小43.8%、55.7%、69.1%,在叶肉栅栏组织细胞中平均分别减小2.1%、39.4%、58.6%,在叶肉海绵组织细胞中平均分别减小8.4%、54.5%、70.1%(表5)。

表5 CaCO3、NaHCO3、NaCl 胁迫对砂糖橘叶片细胞中矿质元素含量平衡的影响
Table 5 Effects of CaCO3,NaHCO3 and NaCl stress on the balance of mineral elements in leaf cells of Shatangju mandarin

叶片区域Leaf area叶脉Vein木质部Xylem韧皮部Phloem叶肉Mesophyll栅栏组织Palisade tissue海绵组织Sponge tissue处理Treatment对照Control CaCO3胁迫CaCO3stress NaHCO3胁迫NaHCO3stress NaCl胁迫NaCl stress对照Control CaCO3胁迫CaCO3stress NaHCO3胁迫NaHCO3stress NaCl胁迫NaCl stress对照Control CaCO3胁迫CaCO3stress NaHCO3胁迫NaHCO3 stresss NaCl胁迫NaCl stress对照Control CaCO3胁迫CaCO3stress NaHCO3胁迫NaHCO3stress NaCl胁迫NaCl stressⅠⅡⅠⅡⅠⅡ ⅠⅡⅠⅡⅠⅡ ⅠⅡⅠ ⅡⅠⅡ ⅠⅡⅠⅡⅠⅡ矿质元素相对含量比植Ratio of the relative content of mineral elements K/Na 3.3±0.2 c 3.5±0.2 b 3.8±0.2 a 1.2±0.1 e 0.8±0.1 f 1.4±0.2 d 0.8±0.1 f 4.7±0.3 a 2.9±0.1 b 2.4±0.2 c 1.6±0.2 d 1.0±0.1 e 1.9±0.2 f 0.9±0.1 f 2.8±0.1 c 3.2±0.1 b 3.7±0.1 a 1.4±0.1 d 0.8±0.1 e 1.3±0.1 d 0.6±0.1 f 3.2±0.1 c 3.5±0.2 b 4.3±0.2 a 1.5±0.1 d 0.8±0.1 f 1.3±0.1 e 0.5±0.1 g K/Cl 3.5±0.2 a 3.2±0.1 b 2.8±0.1 d 3.0±0.2 c 2.6±0.1 e 1.5±0.2 f 1.2±0.1 g 5.0±0.3 a 3.3±0.1 b 2.3±0.2 d 3.5±0.2 b 2.5±0.3 c 2.0±0.1 e 1.2±0.1 f 4.2±0.2 a 3.6±0.1 b 3.2±0.1 c 3.2±0.2 c 2.9±0.1 d 2.3±0.1 e 1.6±0.1 f 4.5±0.2 a 3.6±0.3 b 2.7±0.1 c 2.7±0.1 c 2.0±0.2 d 1.7±0.1 e 0.8±0.1 f Na/Cl 1.1±0.1 d 0.9±0.1 e 0.7±0.1 f 2.6±0.1 b 3.3±0.2 a 1.1±0.1 d 1.6±0.1 c 1.1±0.1 e 1.1±0.1 d 1.0±0.1 f 2.2±0.1 b 2.4±0.1 a 1.1±0.1 e 1.2±0.2 c 1.5±0.3 e 1.1±0.1 f 0.9±0.1 g 2.3±0.3 c 3.6±0.1 a 1.7±0.1 d 2.8±0.2 b 1.4±0.1 d 1.0±0.1 f 0.6±0.1 g 1.8±0.2 b 2.5±0.2 a 1.3±0.1 e 1.5±0.1 c Ca/K 2.4±0.1 c 2.8±0.2 b 3.4±0.4 a 2.3±0.1 e 2.1±0.3 e 2.3±0.1 e 1.9±0.2 e 2.3±0.3 c 3.4±0.1 b 3.9±0.2 a 2.2±0.3 c 2.0±0.1 cd 1.9±0.2 d 1.7±0.1 e 2.6±0.1 cd 3.1±0.4 b 3.5±0.3 a 2.5±0.2 d 2.4±0.1 d 2.6±0.1 cd 2.8±0.1 c 2.6±0.1 c 3.1±0.2 b 3.9±0.2 a 2.5±0.1 c 2.5±0.2 c 2.5±0.1 c 2.5±0.1 c Ca/Na 8.0±0.1 c 9.8±0.2 b 13.0±0.2 a 2.6±0.1 d 1.7±0.1 e 3.1±0.1 d 1.4±0.1 e 10.6±0.3 a 9.8±0.1 b 9.4±0.1 b 3.5±0.1 c 2.1±0.1 d 3.6±0.1 c 1.6±0.1 e 7.5±0.1 c 9.9±0.3 b 12.9±0.1 a 3.4±0.2 d 1.9±0.2 e 3.4±0.2 d 1.6±0.1 e 8.2±0.1 c 10.8±0.2 b 16.7±0.2 a 3.7±0.1 d 2.1±0.1 f 3.2±0.1 e 1.3±0.1 g Ca/Cl 8.4±0.3 c 8.9±0.5 b 9.5±1.2 a 6.6±0.2 d 5.5±0.2 e 3.4±0.1 f 2.2±0.2 g 11.2±0.6 a 11.0±0.2 a 9.0±0.6 b 7.6±0.3 c 5.1±0.1 e 3.9±0.1 e 1.9±0.2 f 10.9±0.1 a 11.0±0.2 a 11.0±0.9 a 7.9±0.2 b 7.1±0.1 c 5.8±0.2 d 4.5±0.2 e 11.5±0.1 a 10.9±0.4 b 10.4±0.3 c 6.6±0.1 d 5.1±0.1 e 4.2±0.2 f 1.9±0.2 g S/P 3.4±0.3 f 4.4±0.4 e 8.2±0.4 b 4.1±0.4 e 4.9±0.3 d 5.7±0.3 c 9.1±0.1 a 1.7±0.6 f 2.4±0.3 e 5.8±0.7 b 2.8±0.5 d 8.2±0.3 a 3.8±0.2 c 6.0±0.2 b 1.8±0.5 f 2.3±0.2 e 3.5±0.7 c 2.2±0.1 e 4.3±0.2 b 2.9±0.2 d 5.8±0.1 a 1.4±0.1 e 2.2±0.2 d 4.3±0.4 b 2.2±0.1 d 4.7±0.3 b 2.8±0.2 c 12.3±0.2 a S/Cl 1.3±0.1 a 1.3±0.1 a 1.4±0.1 a 1.3±0.1 a 1.3±0.1 a 0.8±0.1 b 0.7±0.1 b 1.0±0.1 ab 1.1±0.1 a 0.9±0.2 b 1.1±0.1 a 1.1±0.1 a 0.9±0.2 b 0.6±0.2 c 2.3±0.1 d 2.4±0.1 c 2.4±0.1 b 2.0±0.1 c 2.6±0.1 a 1.7±0.1 f 1.9±0.3 e 1.6±0.1 a 1.6±0.2 a 1.6±0.1 a 1.2±0.1 b 1.2±0.2 b 1.2±0.1 bc 1.1±0.3 c Mg/P 6.9±0.3 b 6.4±0.2 bc 6.1±0.4 cd 6.0±0.3 cd 5.6±0.7 d 6.9±0.3 b 7.9±0.1 a 4.4±0.2 b 3.9±0.3 c 4.0±0.1 c 3.4±0.1 d 5.0±0.2 a 2.6±0.1 e 2.3±0.3 f 2.4±0.1 c 2.3±0.1 c 2.5±0.1 b 2.1±0.2 d 1.6±0.2 e 2.6±0.1 a 2.1±0.2 d 2.0±0.1 b 1.8±0.1 bc 1.7±0.3 c 2.0±0.2 b 2.4±0.2 a 1.9±0.1 bc 2.4±0.3 a Mg/Fe 8.2±0.3 bc 8.8±0.3 abc 9.2±0.4 ab 6.7±0.3 d 9.6±0.5 a 7.7±0.2 cd 9.9±0.2 a 8.4±0.5 a 7.9±0.2 a 4.8±0.5 d 6.7±0.5 b 6.7±0.2 b 5.5±0.1 c 7.0±0.2 b 5.3±0.3 ef 6.4±0.1 d 8.7±0.4 b 5.7±0.1 e 4.8±0.1 f 7.3±0.2 c 9.9±0.2 a 4.9±0.1 b 5.1±0.2 b 5.5±0.2 b 5.0±0.1 b 7.8±0.2 a 6.7±0.1 a 5.7±0.1 b

3 讨 论

盐胁迫下甜土植物(嫌盐植物、淡土植物)体内往往伴随严重的渗透胁迫和膜脂过氧化作用[1]。以往对盐胁迫下柑橘植株渗透胁迫的测试分析主要针对渗调物质含量变化及抗氧化作用[17-19]。近年在柑橘研究中发现,盐胁迫下不接种AMF的酸橙苗较接种AMF的酸橙苗体内渗调物质积累少、抗氧化剂含量低、脱落酸水平较高[23],但尚未见盐胁迫下柑橘植株体内水分状况的报道。本文的测试分析发现,盐碱胁迫下砂糖橘叶片RWC降低、WSD加重、水分状况显著恶化,影响程度NaCl 胁迫>NaHCO3胁迫>CaCO3胁迫,清楚表明盐碱胁迫是砂糖橘植株叶片水分亏缺的重要生理生态因子,结果支持盐胁迫下甜土植物体内水分亏缺的基本规律,为揭示盐碱胁迫下柑橘树受旱及落叶机制提供了一方面的实验数据。

盐胁迫下柑橘植株叶片叶绿素含量和光合生理指标的降低幅度与盐胁迫强度、砧木种类、是否接种菌根菌等因素有关。如:与嫁接在盐敏感砧木上的植株相比,嫁接在耐盐砧木上的金诺橘(Fortunella margarita‘Kinnow’)植株叶片叶绿素含量、PnGs和胞 间CO2 浓 度(Ci)降 低 幅 度 较 小[32];30、60、90 mmol·L-1 NaCl 胁迫下,脐橙和宽皮柑橘植株叶片PnTr随胁迫强度增大而急剧下降,耐盐性较强的宽皮柑橘叶片Pn降低幅度显著小于耐盐性弱的脐橙,但耐盐性强的宽皮柑橘叶片Tr降低幅度大于耐盐性弱的脐橙[33]。本文的研究表明,砂糖橘叶片叶绿素含量和PnTrGs等3 项气体交换参数对盐碱胁迫的响应趋势一致,结果与前人相关研究结果相近,但叶片光合生理状况同其水分状况一样主要受盐碱胁迫种类支配,次为盐碱含量水平,表明砂糖橘引种栽培及果园管理中应高度重视园地土壤化学性质及改良,同时也表明不同种类盐碱胁迫的作用机制存在差异。

中性盐(NaCl)胁迫对植物的伤害主要通过渗透胁迫、离子毒害和营养亏缺[34]。体内积累过量的Na+、Cl-是对植物产生盐害的重要原因之一。在对柑橘类果树盐胁迫响应的生理学分析中,盐分离子吸收、积累和分配特性是重要方面,已有文献部分支持前述特性。如:嫁接在耐盐砧木上的金诺橘根中的Na+和Cl-含量较高而叶片中较低,与嫁接在盐敏感砧木上的植株相反[32];12种柑橘基因型以75 mmol·L-1 NaCl胁迫12周,对盐胁迫最敏感的基因型体内Na+和Cl-含量显著高于耐盐基因型[15];NaCl 胁迫下,耐盐性强的宽皮柑橘叶片Na+、Cl-含量低于耐盐性弱的甜橙,而2种盐分离子在2种柑橘植株根系中的积累量均较高,且盐胁迫下宽皮柑橘叶片中Ca2+和Mg2+含量降低幅度小于甜橙[35]。本文对不同强度NaCl胁迫下砂糖橘叶片Na、Cl等8种矿质元素相对含量的测试结果整体上支持前述规律。

NaHCO3、NaCl易溶于水,均可解离出Na+,但同时NaHCO3是碱性盐,作为胁迫成分时可导致碱性甚至高pH 胁迫。高pH 植会严重影响土壤结构,增强土壤硝化作用,破坏植物细胞内的电荷平衡和pH稳态,阻碍植物对水分和营养物质的吸收[36]。可见,pH 是植物响应盐碱胁迫等逆境胁迫的重要化学信号。与NaCl 导致的中性盐胁迫及其pH 环境不同,根际碱性pH 环境可在更大程度上诱导植物叶片气孔开放,促进根系吸收、积累比与NaCl 胁迫下更多的Na+。同时,碱性pH环境还影响P、Ca、Mg、Fe、Zn等矿质元素的有效性,使植物根际周围容易形成“离子耗尽区”,从而导致显著的缺素症状[37]。本文对不同强度NaHCO3胁迫下砂糖橘植株叶片中Na、Cl 元素含量的测试结果表明,Na 元素含量增大幅度明显大于NaCl 胁迫下,而Cl 元素含量的升高幅度小于NaCl胁迫下,总体结果支持前述规律。

土壤是一个十分复杂的不均匀体。富含CaCO3等石灰性物质的紫色土等石灰性土壤,由于可溶性盐类易于转化为不溶性盐类而难于被植物根系吸收利用,其中对Fe 元素吸收不良主要因为Fe2+盐被转化为Fe3+盐。CaCO3含量不同,土壤pH 植上升幅度不同,矿质形态与分布可能存在较大差异。供试土壤中加入不同量CaCO3,各种形态Zn 的分布及pH植对CaCO3增加尤为敏感,对土壤中P 元素均具显著固定作用,并直接影响土壤中Na+-Ca2+交换平衡[38-39]。显见,石灰性土壤中的CaCO3成分,并非仅仅是沉淀性物质,而是显著参与土壤胶体理化性质形成的重要成分、胁迫成分,从而使得其上生长的柑橘植株普遍表现出多种矿质元素缺素症状[2]。综观本文,对砂糖橘叶片的分析结果总体上支持前述规律,但试验中没有分析栽培基质pH 与叶片细胞中pH 的相关性及其变化,对碱胁迫下参与其离子运输、细胞壁合成、Ca2+信号和植物激素等过程的基因表达与网络应答未做测试,拟在后续研究中分析。

盐害在很大程度上也取决于盐分离子在植物体内的区隔化分配能力。X-射线能谱分析法在揭示植物体内矿质元素微域分布、精确定位、生理功能及其与环境适应关系方面的作用愈来愈受到关注。无论矿质元素以何种形态被吸收利用或存在,所测试出的元素相对含量均与其离子含量呈密切的线性关系。植物耐盐生理生态研究中有多篇文献利用了这一技术,如对盐胁迫下大麦(Hordeum vulgare[40]、枣树(Ziziphus jujuba‘Jinsixiaozao’)根尖中离子微域分布的分析[41],对等渗的盐分和水分胁迫下芦荟(Aloe vera)幼苗中离子分布的分析[42]。柑橘类果树的研究中迄今未见有同类文献。从本文的测试分析结果看,砂糖橘叶片细胞中矿质元素含量及分布支撑前述观点,但又具自身特点。总体上,对照植株的叶片中,韧皮部细胞K、Ca元素含量较高,木质部细胞Na、Mg、P、S、Cl、Fe元素含量较低;Na、Cl元素在栅栏组织细胞和海绵组织细胞中的含量差异较小。

盐碱胁迫下砂糖橘植株的叶片明显具有保持矿质元素含量与分布相对稳定的特性,但具体含量因盐碱胁迫种类不同和胁迫强度加大而异。CaCO3胁迫下,砂糖橘叶片Na 元素含量虽然降低,但Mg、P、K、Fe 元素含量显著降低,S 和Cl 元素含量升高,Ca元素含量大幅升高;NaHCO3胁迫特别是NaCl 胁迫下,叶片K 元素含量虽明显具有较强稳定性,但Cl元素含量升高,Na元素含量大幅升高,Mg、P、Fe、Ca元素含量显著降低。盐碱胁迫下砂糖橘叶片中矿质元素在微域尺度上含量水平与平衡关系的显著改变,尤其是栅栏组织的细胞中Na、Cl、K、Ca 元素含量及K/Na、K/Cl、Ca/Na、Ca/Cl 平衡关系的显著改变,应是导致其生理生态上诸多重大差异的首要机制。同时,3 种盐碱胁迫下叶片细胞中微量元素含量的变化,还对砂糖橘植株的生长发育和形态表征起重要作用,作者将另文报道。

此外,砧木种类对柑橘品种耐盐碱特性具有重要影响[7]。近期,研究人员已报道了一些耐盐碱性强的柑橘砧木种类及其生理生化特性。如朱世平等[11]发现扁平橘在15 种柑橘砧木出苗期表现出较强的耐盐性和对不同pH植的适应性;周心智等[43]发现沃尔卡默柠檬在5种柑橘砧木中表现出较强耐盐性,次为枳橙和硬枝香橙,而宜昌橙和枳对盐胁迫比较敏感;王君秀等[44]发现枳比资阳香橙和红橘更耐酸,红橘和资阳香橙比枳更耐碱;郑妮等[45]研究了资阳香橙×枳的8个杂交后代的耐碱性,筛选出3个耐碱性强的砧木品种,其中的1 个为矮化耐碱砧木资源。本文中研究的砧-穗组合仅1种,盐碱性胁迫下资阳香橙等近期选育的耐盐碱砧木对砂糖橘生理生化特性的影响有必要进一步探究。

4 结 论

砂糖橘对NaCl 胁迫敏感,其次为NaHCO3 胁迫,CaCO3含量达0.7%可产生显著胁迫;不同种类盐碱胁迫的伤害机制存在差异,土壤胶体中的CaCO3成分并非仅仅是沉淀性物质;砂糖橘是甜土植物,引种栽培及果园管理中应高度重视园地土壤化学性质及改良。砂糖橘虽然具有一定的控制盐分离子在叶片不同组织和细胞中区隔化分配的能力,但不同种类和强度的盐碱胁迫均可对其主要矿质元素的微域分布、含量平衡、离子稳态产生破坏,尤其是Na、Cl、K、Ca 4 种矿质元素的含量及K/Na、K/Cl、Ca/k、Ca/Na 4种含量平衡关系。

参考文献

[1] 刘友良,汪良驹.植物对盐胁迫的响应及其耐盐性[M]//余叔文,汤章城.植物生理学与分子生物学.第2 版.北京:科学出版社,1998:752-769.LIU Youliang,WANG Liangju. Plant response to salt stress and salt tolerance[M]//Yu Shuwen,TANG Zhangcheng.Plant Physiology and Molecular Biology. 2nd Edition. Beijing:Science Press,1998:752-769.

[2] 吉前华,李玉堂,王永清.石灰性土壤上柑桔缺铁黄化研究进展[J].四川农业大学学报,1998,16(3):365-369.JI Qianhua,LI Yutang,WANG Yongqing. Research progress of lime-induced chlorosis in citrus trees[J].Chinese Jounal of Sichuan Agricultural Universiy,1998,16(3):365-369.

[3] BARRETT H C,RHODES A M.A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives[J].Systematic Botany,1976,1(2):105-136.

[4] 周开隆,沈廷厚,李学柱,蒋元晖,黄良炉,叶萌民,周承禹,王代武.柑橘[M]//中国农业科学院.中国果树栽培学.北京:农业出版社,1987:865-951.ZHOU Kailong,SHEN Tinghou,LI Xuezhu,JIANG Yuanhui,HUANG Lianglu,YE Mengmin,ZHOU Chengyu,WANG Daiwu.Citrus[M]//Chinese Academy of Agricultural Sciences.Chinese Fruit Cultivation. Beijing:Agricultural Press,1987:865-951.

[5] 郭文武,叶俊丽,邓秀新.新中国果树科学研究70 年:柑橘[J].果树学报,2019,36(10):1264-1272.GUO Wenwu,YE Junli,DENG Xiuxin. Fruit scientific research in New China in the past 70 years:Citrus[J]. Journal of Fruit Science,2019,36(10):1264-1272.

[6] 马翠兰,刘星辉,王湘平.盐胁迫下柚实生苗生长、矿质营养及离子吸收特性研究[J].植物营养与肥料学报,2004,10(3):319-323.MA Cuilan,LIU Xinghui,WANG Xiangping. Study on the growth and characteristics of mineral nutrition and ion absorption of pomelo seedlings under salt stress[J].Plant Nutrition and Fertilizer Science,2004,10(3):319-323.

[7] MAAS E V. Salinity and citriculture[J]. Tree Physiology,1993,12(2):195-216.

[8] ANJUM M A. Effect of NaCl concentration in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance[J]. Acta Physiologiae Plantarum,2008,30(1):43-52.

[9] BRITO M E B,SÁ F V D S,FILHO W D S,SILVA L D A,FERNANDES P D. Gas exchange and chlorophyll fluorescence of citrus rootstock varieties under salt stress[J]. Revista Brasileira de Fruticultura,2016,38(2):e-951.

[10] BALAL R M,ASHRAF M Y,KHAN M M,JASKANI M J,ASHFAQ M. Influence of salt stress on growth and biochemical parameters of citrus rootstocks[J]. Pakistan Journal of Botany,2011,43(4):2135-2141.

[11] 朱世平,陈娇,刘小丰,曹立,陆智明,赵晓春.15 种柑橘砧木出苗期耐盐碱性评价[J].西南大学学报(自然科学版),2014,36(6):47-52.ZHU Shiping,CHEN Jiao,LIU Xiaofeng,CAO Li,LU Zhiming,ZHAO Xiaochun.Evaluation of salinity and alkalinity tolerances of 15 citrus rootstocks by in vitro culture[J]. Journal of Southwest University(Natural Science),2014,36(6):47-52.

[12] ETEHADPOUR M,FATAHI R,ZAMANI Z,GOLEIN B,NAGHAVI M,GMITTER F.Evaluation of the salinity tolerance of Iranian citrus rootstocks using morph-physiological and molecular methods[J].Scientia Horticulturae,2020,261:109012.

[13] 蔡小东,黄颖,曹文娟.盐胁迫对柑橘愈伤组织生理效应的影响[J].湖北农业科学,2012,51(12):2493-2495.CAI Xiaodong,HUANG Ying,CAO Wenjuan. Effect of salt stress on physiological characterestics of cotrus callus[J]. Hubei Agricultural Sciences,2012,51(12):2493-2495.

[14] 马翠兰,刘星辉,王湘平.盐胁迫下琯溪蜜柚苗木生理生化特性的变化研究[J].中国生态农业学报,2007,15(1):99-101.MA Cuilan,LIU Xinghui,WANG Xiangping. Studies on the physiological and biochemical characteristics of Guanximiyou pomelo plants under salt stress[J]. Chinese Journal of Eco-Agriculture,2007,15(1):99-101.

[15] HUSSAIN S,LURO F,COSTANTINO G,OLLITRAULT P,MORILLON R. Physiological analysis of salt stress behaviour of citrus species and genera:low chloride accumulation as an indicator of salt tolerance[J]. South African Journal of Botany,2012,81:103-112.

[16] 魏清江,冯芳芳,古湘,宁少君,苏受婷,辜青青.NaCl 胁迫对水培枳和枸头橙幼苗生长及盐离子分布的影响[J].中国南方果树,2016,45(5):7-11.WEI Qingjiang,FENG Fangfang,GU Xiang,NING Shaojun,SU Shouting,GU Qingqing. Effect of NaCl stress on seedling growth and saline ions distribution in trif oliate and Citrus Aurantium cv.Goutoucheng[J].South China Fruits,2016,45(5):7-11.

[17] 吴强盛,柳威,翟华芬,叶贤锋,赵伦杰.盐胁迫下AM 真菌对枳实生苗生长和根系抗氧化酶的影响[J].江西农业大学学报,2010,32(4):759-762.WU Qiangsheng,LIU Wei,ZHAI Huafen,YE Xianfeng,ZHAO Lunjie.Influences of AM fungi on growth and root antioxidative enzymes of Trifoliate Orange seedlings under salt stress[J].Acta Agriculturae Universitatis Jiangxiensis,2010,32(4):759-762.

[18] KHODHBAKHT D,ASGHARI M R,HAGHITHI M.Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence,photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress[J]. Photosynthetica,2018,56(4):1313-1325.

[19] NAYEM S A,CHOWDHURY M S M,SULTANA N,MASUM G Z H,RAHMAN M S,JAMAL M A H M.Combined effect of salt stress and Xanthomonas axonopodis pv. citri on citrus(Citrus aurantifolia)[J].Heliyon,2020,6(2):e03403.

[20] WANG W,LIU J H. CsPAO4,a polyamine oxidase gene of citrus(Citrus sinensis),functions in polyamine terminal catabolism and inhibits plant growth under salt stress[J].Scientific Reports,2016,6:31384.

[21] SHARMA D K,DUBEY A K,SRIVASTAV M,SINGH A K,SAIRAM R K,PANDEY R N,DAHUJA A,KAUR C.Effect of putrescine and paclobutrazol on growth,physiochemical parameters,and nutrient acquisition of salt-sensitive citrus rootstock Karna Khatta(Citrus karna Raf.)under NaCl stress[J]. Journal of Plant Growth Regulation,2011,30(3):301-311.

[22] ZHANG Y C,WANG P,WU Q H,ZOU Y N,BAO Q,WU Q S.Arbuscular mycorrhizas improve plant growth and soil structure in trifoliate orange under salt stress[J]. Archives of Agronomy and Soil Science,2017,63(4):491-500.

[23] MARZIYEH H D,MAHMOOD E A,ASGHAR M.Alleviation of salt stress and expression of stress-responsive gene through the symbiosis of arbuscular mycorrhizal fungi with sour orange seedlings[J].Scientia Horticulturae,2020,268:109373.

[24] BOURAZZA M,CHETTO O,TALHA A,FARIH A,DOUIRA A,BENYAHIA H.The influence of arbuscular mycorrhizal colonization on key growth parameters of five citrus cultivars under salt stress[J]. Plant Cell Biotechnology and Molecular Biology,2021,22(41-42):125-138.

[25] CHENG X F,WU H H,ZOU Y N,WU Q S,KUČA K. Mycorrhizal response strategies of trifoliate orange under well-watered,salt stress,and waterlogging stress by regulating leaf aquaporin expression[J]. Plant Physiology and Biochemistry,2021,162:27-35.

[26] 郭雁君,曾继武,胡亚平,郭丽英,蒋惠,周希琴,吉前华.基于SSR 标记的肇庆地区柑橘品种分类地位研究[J].中国农学通报,2014,30(4):137-143.GUO Yanjun,ZENG Jiwu,HU Yaping,GUO Liying,JIANG Hui,ZHOU Xiqin,JI Qianhua. Classification of Zhaoqing local citrus germplasm resources based on simple sequence repeat molecular marker analysis[J]. Chinese Agricultural Science Bulletin,2014,30(4):137-143.

[27] 徐呈祥,郑福庆,马艳萍,张少平,陈小婷,叶思敏.贮藏温度对耐贮性不同的柑橘品种果皮蜡质含量及其化学组成的影响[J].食品科学,2021,42(13):223-232.XU Chengxiang,ZHENG Fuqing,MA Yanping,ZHANG Shaoping,CHEN Xiaoting,YE Simin. Effect of storage temperature on peel wax content and chemical composition of citrus cultivars with different storability[J]. Food Science,2021,42(13):223-232.

[28] 黄永敬,吴文,曾继吾,陈杰忠,张瑞敏,朱从一.夏梢生长条件下树干供糖对‘砂糖橘’幼果糖代谢及脱落的影响[J].热带作物学报,2019,40(8):1522-1528.HUANG Yongjing,WU Wen,ZENG Jiwu,CHEN Jiezhong,ZHANG Ruimin,ZHU Congyi. Effects of trunk injection sucrose on sugar metabolism and abscission of fruitlet in‘Shatangju’under summer shoot growth condition[J]. Chinese Journal of Tropical Crops,2019,40(8):1522-1528.

[29] 吴文,张瑞敏,朱从一,曾继吾,马培恰,黄永敬.隔年交替结果对砂糖橘产量、品质的影响及效益研究[J].广东农业科学,2020,47(8):30-36.WU Wen,ZHANG Ruimin,ZHU Congyi,ZENG Jiwu,MA Peiqia,HUANG Yongjing. Effect of alternate year bearing technology on yield and quality of Shatangju mandarinand its economic benefits analysis[J]. Guangdong Agricultural Sciences,2020,47(8):30-36.

[30] XU C X,MA Y P,LIU Y L. Effects of silicon (Si) on growth,quality and ionic homeostasis of aloe under salt stress[J]. South African Journal of Botany,2015,98:26-36.

[31] 徐呈祥,徐锡增.Si 对NaCl 胁迫下金丝小枣叶片中矿质元素微域分布的影响[J].果树学报,2010,27(3):355-362.XU Chengxiang,XU Xizeng. Effect of silicon on mineral element micro-distribution in leaf blade of Ziziphus jujuba cv. Jinsixiaozao under NaCl stress[J]. Journal of Fruit Science,2010,27(3):355-362.

[32] SHAHID M A,BALAL R M,KHAN N,SIMÓN-GRAO S,ALFOSEA-SIMÓN M,CÁMARA-ZAPATA J M,MATTSON N S,GARCIA-SANCHEZ F. Rootstocks influence the salt tolerance of Kinnow mandarin trees by altering the antioxidant defense system,osmolyte concentration,and toxic ion accumulation[J].Scientia Horticulturae,2019,250:1-11.

[33] WEI Q J,LIU Y Z,SHENG O,AN J C,ZHOU G F,PENG S A.Effect of salinity on the growth performance and macronutrientstatus of four citrus cultivars grafted on trifoliate orange[J].African Journal of Agricultural Research,2013,8(22):2637-2644.

[34] MUNNS R,TESTER M. Mechanisms of salinity tolerance[J].Annual Review of Plant Biology,2008,59:651-681.

[35] FU L N,CHAI L J,DING D K,PAN Z Y,PENG S A.A novel citrus rootstock tolerant to iron deficiency in calcareous soil[J].Journal of the American Society for Horticultural Science,2016,141(2):112-118.

[36] 曹彦强,闫小娟,罗红燕,贾仲君,蒋先军.不同酸碱性紫色土的硝化活性及微生物群落组成[J].土壤学报,2018,55(1):194-202.CAO Yanqiang,YAN Xiaojuan,LUO Hongyan,JIA Zhongjun,JIANG Xianjun. Nitrification activity and microbial community structure in purple soils with different pH[J].Acta Pedologica Sinica,2018,55(1):194-202.

[37] 穆阳杰,詹玉洁,许卫锋,夏天雨.高pH 胁迫下拟南芥根转录组学与网络应答[J].土壤学报,2020,57(3):691-701.MU Yangjie,ZHAN Yujie,XU Weifeng,XIA Tianyu.Transcriptome and network response of Arabidopsis root under high pH stress[J].Acta Pedologica Sinica,2020,57(3):691-701.

[38] 黄友宝,马义兵,夏荣基,孙祖琰,张国印,王重廉.土壤微量元素研究:Ⅳ.碳酸钙对土壤中加入锌的形态转化的影响[J].北京农业大学学报,1989,15(3):304-308.HUANG Youbao,MA Yibing,XIA Rongji,SUN Zuyan,ZHANG Guoyin,WANG Zhonglian. Reseach on soil microelements:Ⅳ. the effect of calcium carbonate on forms and transformation of soil zinc[J]. Acta Agricultural Universitatis Pekinensis,1989,15(3):304-308.

[39] BOOSTANI H R,NAJAFI-GHIRI M,AMIN H,MIRSOLEIMANI A. Zinc desorption kinetics from some calcareous soils of orange (Citrus sinensis L.) orchards,southern Iran[J]. Soil Science and Plant Nutrition,2019,65(1):20-27.

[40] LIANG Y C,DING R X. Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants[J]. Science in China Series C:Life Sciences,2002,45(3):298-308.

[41] 徐锡增,徐呈祥.硅对盐胁迫下枣树根尖离子微域分布的影响[J].南京林业大学学报(自然科学版),2006,30(2):85-88.XU Xizeng,XU Chengxiang. Effects of Silicon on ion microdistribution status of Ziziphus jujuba cv. Jinsixiaozao under Na-Cl stress[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2006,30(2):85-88.

[42] 郑青松,刘兆普,刘友良,刘玲.等渗的盐分和水分胁迫对芦荟幼苗生长和离子分布的效应[J]. 植物生态学报,2004,28(6):823-827.ZHENG Qingsong,LIU Zhaopu,LIU Youliang,LIU Ling. Effects of iso-osmotic salt and water stresses on growth and ionic distribution in aloe seedlings[J]. Acta Phytoecologica Sinica,2004,28(6):823-827.

[43] 周心智,张云贵.NaCl 胁迫对5 种柑橘砧木生长及生理特性的影响[J].西南大学学报(自然科学版),2019,41(11):1-6.ZHOU Xinzhi,ZHANG Yungui. Evaluation of salinity tolerance in five citrus rootctock seedlings[J]. Journal of Southwest University(Natural Science),2019,41(11):1-6.

[44] 王君秀,袁高鹏,阮科,彭良志,凌丽俐,付行政,淳长品.不同pH 营养液处理下3 种柑橘砧木有机酸分泌的差异[J].园艺学报,2018,45(6):1054-1066.WANG Junxiu,YUAN Gaopeng,RUAN Ke,PENG Liangzhi,LING Lili,FU Xingzheng,CHUN Changpin. Differences in organic acid secretion of three citrus rootstocks cultivated in nutrient solution with various pH levels[J]. Acta Horticulturae Sinica,2018,45(6):1054-1066.

[45] 郑妮,曹立,彭良志,余歆,淳长品,凌丽俐,付行政,张文龙,吴坤明,冉从洋,钱春.资阳香橙×枳8 个杂交后代的耐碱性评价[J].果树学报,2021,38(3):352-360.ZHENG Ni,CAO Li,PENG Liangzhi,YU Xin,CHUN Changpin,LING Lili,FU Xingzheng,ZHANG Wenlong,WU Kunming,RAN Congyang,QIAN Chun. Evaluation of alkali tolerance of 8 hybrid rootstock progenies of Ziyang xiangcheng and trifoliate orange[J]. Journal of Fruit Science,2021,38(3):352-360.

Effect of saline-alkali stress on leaf water deficit,gas exchange and microdistribution of eight mineral elements in Shatangju mandarin (Citrus reticulata)

GUO Yanjun1,2,JI Qianhua1,2*,DU Pengfei2,SHANG Hebin2,ZHONG Yaling2
(1Fruit Research Institute, Zhaoqing University, Zhaoqing 526061, Guangdong, China;2College of Life Sciences, Zhaoqing University,Zhaoqing 526061,Guangdong,China)

Abstract:【Objectives】The experiment was undertaken to explore the physiological and ecological characteristics of Shatangju mandarin (Citrus reticulata‘Shatangju’) under saline-alkali stress, and to provide a scientific support for the introduction, cultivation and soil management in calcareous and saline-alkali soils.【Methods】The 3-year-old Shatangju mandarin (Citrus reticulata‘Shatangju’) trees grafted on the trifoliate orang[Poncirus trifoliate(L.)Raf.]were used as the test materials,and CaCO3,NaHCO3 and NaCl were used to simulate the main chemical components in calcareous soil, alkaline soil and saline soil,respectively.Two levels of addition of 0.3%and 0.7%compounds to the cultivation substrate were designed,and the trees without the addition of saline-alkali served as the control.During 90 d of cultivation, the leaf water status, gas exchange characteristics and effects on the microdomain distribution and balance of eight mineral elements were tested and analyzed.【Results】(1)Under salinealkali stress, the relative water content (RWC) in leaves decreased and the water saturation deficit(WSD) increased; the difference rose with the increase of saline-alkali stress intensity and treatment time,but was mainly dominated by the types of saline-alkali components in the substrate;the difference of WSD was greater than that of RWC;after 90 d of stress,compared with the control,under the stress of 0.3%CaCO3,0.3%NaHCO3,0.3%NaCl,0.7%CaCO3,0.7%NaHCO3 and 0.7%NaCl,the RWC decreased by 3.2%, 7.6%, 9.6%, 13.8%, 15.5% and 22.5%, respectively, and the WSD increased by 46.2%, 109.2%, 138.5%, 198.5%, 223.1% and 323.1%, respectively. (2)Under saline-alkali stress, the chlorophyll content (Chl C), net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) in leaves significantly decreased, the reduction range increased with the extension of the stress time,and the difference was large under different kinds of saline-alkali stress,which was generally consistent with the response of RWC and opposite to that of WSD; upto 90 d of stress, under the stress of 0.3% CaCO3, 0.7% CaCO3, 0.3% NaHCO3, 0.7% NaHCO3, 0.3% NaCl and 0.7% NaCl, Chl C content decreased by 4.5%, 16.5%, 15.4%, 39.7%, 31.4% and 49.4%, Pn decreased by 7.2%, 23.1%,18.3%,46.5%,42.3%and 61.4%,Tr decreased by 3.8%,8.3%,11.8%,32.9%,38.4%and 63.0%,Gs decreased by 2.5% , 10.4%, 19.0%, 36.2%, 46.0% and 65.6%, respectively. (3)After 90 d of cultivation under saline-alkali stress,the relative contents of major mineral elements in the cells of different tissues in the leaves of Shatangju mandarin changed significantly.Among them, under CaCO3 stress, the relative contents of S,Cl and Ca in leaf palisade tissue cells increased by 18.8%,12.2%and 13.6%,respectively; the relative contents of Na, Mg, P, K and Fe decreased by 24.6%, 24.0%, 22.5%, 9.8% and 43.5%.Under NaHCO3 stress,the relative contents of Na,S and Cl in palisade tissue cells increased by 163.6%, 31.8% and 73.8%, respectively; the relative contents of Mg, P, K, Ca and Fe decreased by 39.0%,24.5%,6.5%,12.1%and 45.6%,respectively.Under NaCl stress,the relative contents of Na,S and Cl in palisade tissue cells increased by 183.1%, 183.1% and 78.1%, respectively; the relative contents of Mg, P, K, Ca and Fe decreased by 50.0%, 37.3%, 17.1%, 15.6% and 60.9%, respectively. (4)Under saline-alkali stress, the balance relationship of the relative contents of eight mineral elements in the leaf cells changed significantly,with the smallest change occurring under CaCO3 stress and the largest change under NaCl stress, and the change in phloem cells was significantly greater than that in xylem cells, and the change in palisade tissue cells was significantly smaller than that in sponge tissue cells.Among ten ratios of mineral elements in palisade cells, the ratios of Na/Cl, Ca/K, S/P and Mg/Fe increased significantly,but Ca/K ratio increased to a minimum,S/P ratio increased significantly,the other 6 ratios all decreased significantly, and K/Na ratio and K/Cl ratio decreased to a maximum, while S/Cl and Mg/P decreased less.Under the stress of CaCO3,NaHCO3 and NaCl,the S/P ratios with the largest increase in palisade tissue cells increased by 61.1%,80.6%and 141.7%on average,and the K/Na ratios with the greatest decrease reduced to 2.1%, 39.4% and 58.6% on average, respectively.【Conclusion】Shatangju mandarin was sensitive to NaCl stress, followed by NaHCO3 stress, and 0.7% CaCO3 content of could cause significant stress. Saline-alkali stress may lead to significant leaf water deficit and aggravation of photosynthetic physiology of Shatangju mandarin;the microdomain distribution,balance and ion homeostasis of the main mineral elements in the leaves also changed significantly under saline-alkali stress. Therefore, soil chemical properties and improvement should be paid a great attention to in the introduction,cultivation and orchard management of Shatangju mandarin.

Key words: Shatangju mandarin; CaCO3 stress; NaHCO3 stress; NaCl stress; X-ray energy spectrum analysis;Mineral nutrition balance

中图分类号:S666.2

文献标志码:A

文章编号:1009-9980(2022)06-1029-13

DOI:10.13925/j.cnki.gsxb.20210505

收稿日期:2021-10-09

接受日期:2022-04-27

基金项目:财政部和农业农村部:国家现代农业产业技术体系项目(CARS-26);广东省科技厅农村科技特派员项目(2021-1056-9-4)

作者简介:郭雁君,男,副教授,硕士,从事柑橘栽培科技研究。Tel:0758-2716418,E-mail:yjguo@163.com

*通信作者Author for correspondence.Tel:0758-2716418,E-mail:qhgee@163.com