疏果是果树栽培中一项重要的技术措施。疏果程度直接决定树体的库源比,进而影响叶片的光合特性[1]。前人通过对桃[2]、柑橘[3]、苹果[4-5]、开心果[6]和核桃[7]等的研究表明,库源比下降,易导致叶片光合效率的显著降低。还有研究表明,通过增加库强或减少源强使库源比增加后,叶片光合效率未发生明显变化[8-9]。还有随着负载量降低叶片光合效率不断上升的报道[10-11]。此外,库源比改变,还会对叶片中光合同化物及叶绿素含量造成影响[12],进而影响叶片的光合能力。
果实的品质和产量与库源比有密切关系。库源比变化导致叶片光能捕获和光合产物的分配发生变化,从而影响果实品质和产量[13]。有研究表明,负载量下降,果实的外在品质和内在品质均提高[14],主要表现在单果质量、可溶性固形物含量、可溶性糖含量、糖酸比等指标方面。也有研究表明,负载量降低到一定程度后,果实的可溶性糖、可溶性固形物和维生素C 含量不会随着库源比的减小而持续增加,可滴定酸含量则明显增加,果实品质下降[15]。
落叶果树在果实采收后至落叶前的时间段内,叶片制造的营养物质大部分被贮存起来。树体贮存的营养对越冬及下一个生长季的萌芽、开花、抽梢、展叶、生根等过程的顺利完成有显著的影响[16]。有研究表明,负载量降低,对油橄榄当年的枝长度和翌年春季的花序数量有显著正向影响[17]。张社南等[18]对沃柑的研究发现,树体负载量高,结果多,产量高,树势弱,翌年花少且弱、果少或无的小年结果现象明显,认为负载量对于树体来年的生长发育及果实品质和产量存在显著影响。
笔者以霞晖8 号桃为研究对象,分析不同负载量下叶片光合特性、果实品质及树体生长发育间的差异,探讨叶片生理特性、果实品质、树体生长发育与负载量的关系,以期为桃树的合理负载提供理论依据。
试验于2020 年在江苏省南京市江苏省农业科学院桃试验园(118.79772″ E,32.04856″ N;海拔12 m)进行。供试材料为长势基本一致的霞晖8 号桃树,树龄9 a,两主枝“Y”形,株行距2 m×5 m,南北行向,起垄栽培,生草覆盖,按常规方式进行田间土肥水管理和病虫害防治。
根据霞晖8号桃盛果期植株的生长发育情况和结果特性,结合本试验设计的研究目的,将试验材料分为5个处理,分别为T1(留取全树果实)、T2(留取全树约75%的果实)、T3(留取全树约50%的果实)、T4(留取全树约25%的果实)和T5(全树不留果实,对照)。根据树势、干周参数及叶果比适当调整果实数量。分别于定果后2 d(约盛花后40 d,记为P1)、硬核期(约盛花后75 d,记为P2)、采前10 d(约盛花后112 d,记为P3)、采后2 d(约盛花后127 d,记为P4)4 个时期进行叶片相关参数的测定及样品采集。每处理3 株树,单株小区,3 次重复。于每时期下午18:00,采集各处理树体中部成熟叶片(T1、T2、T3和T4为有果长果枝的自顶端往下5~6枚叶片,T5为无果长果枝的叶片),立即带回实验室,去除主脉,磨碎混匀,3次重复。
每株树体中部外围标记10个果实(T5除外),每隔10 d测定果实的纵、横、侧径,直至果实成熟,单株小区,3 次重复。果实成熟期采样[19],各处理统一采集树体中部外围无病虫害、无机械损伤的果实30个(不论标记与否),每10 个果实为1 次重复,3 次重复。同时统计每个处理的产量,计算每666.7 m2的产量。
1.2.1 光合作用相关参数的测定 选择晴朗无风的天气,自08:00—18:00 每隔2 h 测定1 次,3 次重复。用Li-6400 便携式光合作用测定仪(Li-Cor Inc.,林肯,美国)测定叶片光合作用相关参数及大气温度(Ta)、相对湿度(RH)、大气CO2浓度(Ca)和光量子通量密度(PFD)。选择树体外围中部生长健壮、长势基本一致的成熟功能叶(与叶片样品采集部位相同)测定净光合速率(Pn)、细胞间隙CO2浓度(Ci)和蒸腾速率(Tr)等指标,并计算水分利用效率(WUE)=Pn/Tr[20]、表观光能利用效率(LUE)=Pn/PFD[21]和表观CO2利用效率(CUE)=Pn/Ci[22]。净光合速率日积分植(Diurnal integral value of Pn,DIV of Pn)利用Auto-CAD软件由计算日变化曲线围成的面积得到[23]。
1.2.2 叶绿素含量的测定 参照Lichienthaler 等[24]的方法测定叶绿素含量。在磨碎的0.2 g叶片样品中加入95%的乙醇5 mL,避光浸提24 h,10 000 r·min-1离心10 min,取上清液在665 nm和649 nm处测定吸光度。叶绿素a 浓度(Chl a)、叶绿素b 浓度(Chl b)和叶绿素总浓度(Ct)计算公式如下:
根据Ct计算叶绿素含量,叶绿素含量以鲜质量(FW)计。
1.2.3 可溶性糖和糖醇含量的测定 采用Agilent 1100 高效液相色谱(HPLC)系统(Agilent Technology,圣克拉拉,美国)进行测定。使用CARBOSep CHO-620 CA 碳水化合物柱(10 µm 粒径;6 mm×250 mm;Transgenomic Inc.,纽约,美国)(柱温度80 ℃)和折射率检测仪(RID)。HPLC条件如下:超纯水流动相、流量0.5 mL·min-1、进样5µL。通过与外标品的保留时间和峰面积的比较,对蔗糖、葡萄糖、果糖和山梨醇进行鉴别和定量[25],总糖含量=蔗糖含量+葡萄糖含量+果糖含量+山梨醇含量。
1.3.1 果实大小测定 用精确度为0.01 mm的电子数显卡尺(桂林广陆数字测控股份有限公司)测定果实纵径、横径、侧径,单位以mm表示。
1.3.2 单果质量测定 用分度植为0.1 g 的JA5003型电子天平(中国舜宇恒平公司)测定单果质量,质量以g表示。
1.3.3 硬度测定 用TA.XT Plus质构仪(Stable Micro Systems,英国)在果实缝合线两侧腹中部测定果肉硬度,探头直径8 mm,贯入速率1 mm·s-1,测试深度5 mm。取两侧腹部果实硬度测定数据的平均植作为单个果实的硬度[26]。
1.3.4 可溶性固形物含量(SSC)测定 果实SSC用手持式便携数显折光仪PAL-1(ATAGO,Itabashiku,东京,日本)测定,取两侧腹部测定数据的平均植作为单个果实的SSC[26]。
1.3.5 糖组分及有机酸含量测定 果实糖组分测定方法同叶片。
有机酸含量测定采用相同的高效液相色谱系统,配备1个二极管阵列检测器和1个Agilent ZORBAX SB-Aq 柱(4.6 mm×250 mm ID,5 µm)。在25 ℃下以0.5 mL·min-1的流速进行色谱分析。在214 nm 处测量洗脱液的紫外线吸收度。流动相为pH 植2.7 的0.02 mol·L-1的KH2PO4溶液。注射每个样品提取物的5µL到高效液相色谱中,根据保留时间对苹果酸、奎尼酸和柠檬酸进行标准鉴定,并根据标准曲线和峰面积计算样品有机酸含量[25],总酸含量=苹果酸含量+奎尼酸含量+柠檬酸含量,糖酸比=总糖含量/总酸含量。
采用长枝修剪方法进行冬季整形修剪,按照每666.7 m2留枝量8000~9000 根留取结果枝。在12 月下旬冬季修剪前调查统计树体花芽、叶芽及各类枝条数量。各处理选取树体中部外围长度基本一致的长果枝(长度在30~60 cm的果枝)10根,调查每根枝条的花芽、叶芽数量及枝条中部节与节之间的长度,取平均植。调查每处理所有树体的花束状果枝(≤5 cm)、短果枝(>5~15 cm)、中果枝(>15~30 cm)、长果枝(>30~60 cm)及徒长性结果枝(>60 cm)数量。
用SPSS 23.0(SPSS Inc.,芝加哥,美国)进行方差分析。以ANOVA模块分析不同处理间的差异显著性,采用Excel 2016软件制图。
综合果实品质指标(单果质量、产量、硬度、可溶性固形物含量、糖酸比、蔗糖含量、葡萄糖含量、果糖含量、山梨醇含量和总糖含量),利用DPS数据处理系统对单项指标进行主成分分析和隶属函数分析,结合各主成分的权重,计算不同负载量处理的综合评价植(D植),并进行排序[27-29]。
由图1 知,P4 时期的环境温度明显处于最高水平,P2次之,P1和P2的日最高温出现在14∶00,P3和P4 则出现在12∶00。4 个时期大气CO2浓度日变化趋势一致,均表现出先下降再上升的趋势,日均植(数据未展示)大小表现为P2 >P1 >P4 >P3。4个时期中,相对湿度的日变化曲线均呈先下降再上升趋势,日均植(数据未展示)以P3 最高,P1 最低。光量子通量密度在4个时期的日变化均呈先上升后下降趋势,且峰植都出现在12∶00。
图1 试验期间主要环境因子日变化
Fig.1 Diurnal variation of major environmental factors during the experiment
P1、P2、P3 和P4 分别代表定果后2 d、硬核期、采前10 d 和采后2 d 4 个时间段,下同。
In the figure,P1,P2,P3 and P4 represent the four periods of two days after fruit thinning,core-hardening period,ten days before harvest and two days after harvest,respectively,the same as below.
由图2 可见,在P1,净光合速率日积分植以T1最高,且与T5差异不显著,T3与T5也不存在显著性差异,T2 最低(p <0.05)。到P2,T1 的净光合速率日积分植最高,不同处理表现为T1 >T3、T4 >T5 >T2(p <0.05)。P3 时,该时期的净光合速率日积分植以T2和T5处于最高水平,T3和T4差异不显著,T1 处于最低水平(p <0.05)。P4 阶段,该时期T1 和T5 的净光合速率日积分植最高,不同处理表现为T1、T5 >T2 >T3、T4(p <0.05)。T3 的净光合速率日积分植在4 个时期均处于较高水平,表明T3叶片生产碳水化合物的能力较强。
图2 不同负载量下桃叶片净光合速率日积分值比较
Fig.2 Comparison of daily integral values of net photosynthetic rate of leaves under different fruit loads
不同小写字母表示同一时期不同处理间差异显著(p <0.05)。下同。
Different lowercase letters indicate significant difference between different treatments in the same period(p <0.05).The same below.
由图3 可以看出,在P1 期,T2 叶片的WUE 最大,T1 最小。到P2 期,T2、T3、T4 和T5 间及T1、T3和T4间的WUE均不存在显著性差异,但T2和T5显著高于T1。P3 时,T3 的WUE 处于最高水平,不同处理表现为T3 >T1 >T2、T4、T5(p <0.05)。P4阶段,T4的WUE最高,显著高于其他处理,T1与T2及T1、T3 和T5 间均差异不显著,但T2 显著高于T3和T5。
图3 不同负载量下桃叶片WUE、LUE 和CUE 日均值比较
Fig.3 Comparison of daily mean values of WUE,LUE and CUE of peach leaves under different fruit loads
T1、T3 和T5 的LUE 在P1 均处于最高水平,且差异不显著,不同处理表现为T1、T3、T5 >T4 >T2(p <0.05)。在P2,T1 和T3 的LUE 最高,T4 和T5 次之,T2 最低。到P3,不同处理的LUE 表现为T2、T5 >T3、T4 >T1(p <0.05)。P4 时,T5 的LUE 处于最高水平,不同处理表现为T5 <T1、T2、T3 >T4(p <0.05)。
P1 时,T2 和T4 的CUE 最高,T1、T3 和T5 次之。在P2,T1、T4 和T5 间及T2、T3 和T4 间的CUE均不存在显著性差异,但T1 和T5 显著高于T2 和T3。到P3,T2、T3、T4 和T5 间及T1、T3 和T4 间的CUE均差异不显著,但T2和T5显著高于T1。P4阶段,不同处理的CUE 表现为T1、T4、T5 >T2 >T3(p <0.05)。T3在果实采收前的WUE、LUE和CUE均较高,说明疏除全树50%的果实后更利于桃树叶片进行碳同化。
由图4 可以看出,在P1 期,所有处理叶片的叶绿素含量均无显著性差异。到P2期,T1、T2和T3的叶绿素含量均处于最高水平,且三者间差异不显著,T4 次之,T5 最低。P3 时,T1 和T4 的叶绿素含量最高,且二者差异不显著,不同处理表现为T1、T4 >T2、T3 >T5(p <0.05)。到P4 阶段,T1 和T4 的叶绿素含量依然处于最高水平,T3次之,T2和T5含量最低。以上结果说明,树体留果能显著提高桃树叶片的叶绿素含量。
图4 不同负载量下桃叶片叶绿素含量比较
Fig.4 Comparison of chlorophyll content in peach leaves under different fruit loads
图5表明,在P1,T5叶片的蔗糖含量最高,T1最低(p <0.05)。而葡萄糖含量则以T2最高,且与T5差异不显著,T4 处于相对较低水平。该时期T1 和T5 的果糖含量处于最高水平,且差异不显著,T3 和T4 处于最低水平,T2 与其他处理均无显著性差异。就山梨醇含量而言,不同处理表现为T2、T5 >T4 >T1、T3(p <0.05)。在该时期总糖含量以T2和T5 处于最高水平,其次为T1、T3 和T4(p <0.05)。
图5 不同负载量下桃叶片糖、糖醇含量比较
Fig.5 Comparison of sugar and sugar alcohol contents in peach leaves under different fruit loads
P2 阶段,不同处理的蔗糖含量表现为T2 >T3 >T1 >T4、T5(p <0.05)。T2的葡萄糖含量最高,T1 和T3 次之,T4 和T5 最低。T2 的果糖含量显著高于T1 和T3,二者间差异不显著,T4 和T5 与其他处理均差异不显著。该时期山梨醇含量和总糖含量变化趋势一致,不同处理均表现为T2 >T3 >T4 >T1、T5(p <0.05)。
P3阶段,不同处理的蔗糖含量表现为T2、T5 >T1 >T4 >T3(p <0.05)。就果糖含量而言,T1、T2和T5 均处于最高水平且三者无显著性差异,T3 和T4 最低。在该时期,葡萄糖、山梨醇和总糖含量均表现为T5最高,T1和T2次之,T3和T4最低。
P4 阶段,T2 的蔗糖含量最高,T1、T3 和T5 次之,T4最低。该时期不同处理的葡萄糖含量表现为T2、T5 >T1 >T3、T4(p <0.05)。就果糖含量而言,T1、T2 和T5 含量处于最高水平,且三者差异不显著,T3 和T4 最低。该时期不同处理的山梨醇和总糖含量均表现为T2 >T5 >T1 >T3、T4(p <0.05)。说明叶片中碳水化合物越少,源叶输出碳水化合物的能力越强。
从图6可以看出,在果实生长发育过程中T1的纵、横、侧径均处于最低水平,不同处理果实的纵、横、侧径均表现为T4 >T3 >T2 >T1。试验中后期(约花后99 d)果实生长速度明显加快,进入第2次膨大期,说明不同负载量对桃果实大小的影响主要体现在果实生长后期。随着负载量的降低,果实大小呈上升趋势,疏果具有增大果个的作用。
图6 不同负载量下桃果实大小变化进程
Fig.6 The changing process of peach fruit size under different fruit loads
T1 成熟期为花后125 d,T2 成熟期为花后120 d,T3 成熟期为花后119 d,T4 成熟期为花后122 d。
The maturity stage of T1, T2, T3 and T4 were 125, 120, 119 and 122 DAFB,respectively.
不同负载量对桃果实的外在品质和内在品质均有影响。由表1可知,随着负载量降低,单果质量不断上升,与T1相比,T2、T3和T4的单果质量分别增加了132.62%、147.49%和188.32%。T1 每666.7 m2产量显著高于其他3个处理,不同处理表现为T1 >T2 >T3 >T4(p <0.05)。T1和T4的果肉硬度均处于最高水平且二者间无显著性差异,其他处理间差异不显著。T2、T3和T4间的SSC差异不显著,但均显著高于T1,分别比T1提高了28.58%、29.78%和31.43%。就糖酸比而言,以T3 最高(p <0.05),T2和T4间差异不显著,T1最低。以上结果表明,降低负载量可以显著提高桃果实品质。
表1 不同负载量下桃果实单果质量、产量及品质指标比较
Table 1 Comparison of single fruit weight,yield and quality indicators of peach fruit under different loads
注:同列不同小写字母表示不同处理间差异显著(p <0.05)。下同。
Note:Different lowercase letters in the same column indicate significant difference between different treatments(p <0.05).The same below.
处理Treatment产量Yield/(kg·666.7 m-2)硬度Firmness/(kg·cm-2)w(可溶性固形物)SSC/%单果质量Single fruit weight/g糖酸比Sugaracid ratio T1 T2 T3 T4 113.29 d 263.54 c 280.38 b 326.64 a 2 987.13 a 2 517.63 b 2 354.17 c 1 827.63 d 33.58 a 29.09 b 29.61 b 34.69 a 10.88 b 13.99 a 14.12 a 14.30 a 19.55 c 31.24 b 35.05 a 29.53 b
由表2 可知,果实蔗糖、总糖含量均以T3 最高并与T4差异不显著,而T4与T2也不存在显著性差异,T1 最低。T2、T3 和T4 及T1、T2 和T4 的葡萄糖含量均差异不显著,但T3 显著高于T1。果糖含量以T3 最高,不同处理表现为T3 >T1、T2 >T4(p <0.05)。就山梨醇含量而言,T2 和T4 最高,T3次之,T1最低。表明留果约50%的负载量下桃果实积累糖的能力最强。
表2 不同负载量下桃果实糖、糖醇含量比较
Table 2 Comparison of sugar and sugar alcohol contents in peach fruit under different loads
w(/g·kg-1)
蔗糖Sucrose葡萄糖Glucose果糖Fructose山梨醇Sorbitol总糖Total sugar 83.54 c 118.07 b 124.60 a处理Treatment T1 T2 T3 T4 52.01 c 83.45 b 89.22 a 86.31 ab 14.28 b 14.88 ab 15.84 a 14.74 ab 14.36 b 13.85 b 15.40 a 13.35 c 2.89 c 5.89 a 4.14 b 6.49 a 120.89 ab
由表3可以看出,T5的花芽数量处于最高水平,T2、T3和T4间差异不显著,T1的花芽数量最少。而叶芽数量在处理间与花芽数量相反,表现为T1的叶芽最多,T5 叶芽最少。节间长度以T3 和T5 最大,T1和T4次之,T2最小。T3的花束状果枝数处于最高水平,与T5差异不显著,T4与T5间也不存在显著性差异,T1最少。短果枝以T4最多,不同处理表现为T4 >T2 >T5 >T1 >T3(p <0.05)。T5 的中果枝最多,不同处理表现为T5 >T3 >T1,T2 >T4(p <0.05)。就长果枝数量而言,T5 最多,与T2差异不显著,T2与T1间也不存在显著性差异,T3最少。说明适宜负载量有助于花芽分化,均衡果枝组成比例,有利于树体来年的生长发育。
表3 不同负载量下桃花芽、叶芽及果枝类型比较
Table 3 Comparison of peach flower bud,leaf bud and fruit branch types under different loads
处理Treatment芽类组成数量Number of bud composition花芽Flower bud叶芽Leaf bud节间长度Internode length/cm结果枝数量Number of bearing branch花束状果枝Bouquet fruit branch短果枝Short fruit branch中果枝Medium fruit branch长果枝Long fruit branch徒长性结果枝Fruitless branche T1 T2 T3 T4 T5 11 c 14 b 17 b 18 b 19 a 19 a 16 b 13 b 12 b 11 c 1.88 b 1.63 c 2.06 a 1.88 b 2.01 a 32 d 64 c 96 a 84 b 88 ab 144 d 168 b 134 e 178 a 156 c 80 c 76 c 92 b 62 d 110 a 192 b 204 ab 158 d 184 c 220 a 2 d 4 c 4 c 6 b 8 a
进一步对T1~T4 果实的10 个品质指标进行主成分分析。通过分析,10个指标转化为3个主成分,其中前2 个主成分(以Z 表示)的累计贡献率达93.70%(表4),表明这2 个主成分可基本反映10 个指标提供的信息,可用主成分分析法对T1~T4 的果实综合品质进行概括分析和比较研究。
表4 各品质指标的主成分系数、特征值、贡献率及权重
Table 4 Principal component coefficients,eigen values,contribution rates and weights of each quality index
品质指标Quality index单果质量Single fruit weight产量Yield硬度Firmness可溶性固形物含量SSC糖酸比Sugar-acid ratio蔗糖含量Sucrose content葡萄糖含量Glucose content果糖含量Fructose content山梨醇含量Sorbitol content总糖含量Total sugar content特征植Eigen value贡献率Contribution rate/%累计贡献率Contribution rate/%权重Weight主成分Principal component Z1 Z2 0.969 5-0.820 8-0.391 0 0.996 2 0.947 4 0.999 0 0.712 2-0.034 8 0.756 6 0.998 4 6.732 1 67.32 67.32 0.718 5-0.228 4 0.471 5-0.733 4-0.068 5 0.318 5 0.044 7 0.666 7 0.954 0-0.599 8 0.055 7 2.637 9 26.38 93.70 0.281 5
由表4还可以看出,Z1中,果实单果质量、产量、SSC、糖酸比、蔗糖含量、葡萄糖含量、山梨醇含量和总糖含量8个性状的载荷植(系数)均较高。Z2中载荷植最大的指标为果糖含量,其次为果实硬度,其他指标载荷植的绝对植均较Z1低。
以所得的主成分(Z1、Z2)的数植进行隶属函数分析,求得所有主成分的隶属函数植(表5)。对主成分Z1而言,T3的U(X1)最大,在这一主成分上隶属关系强,而T1 则相反,隶属关系最差。Z2中则以T3的U(X2)最大,T4 最小。结合隶属函数植和权重求得每个负载量下果实品质的综合评价植(D),并根据D 植对各负载量下果实综合品质的高低进行排序,发现T3的D植最大,表明T3处理下果实综合品质最好,其次是T2、T4,T1的D植最小,果实综合品质相对较差。
表5 各品质指标的主成分值、隶属函数值和D 值
Table 5 Principal component values,subordinate function value and D values of each quality index
处理Treatment主成分植Principal component value D 植D velue排序No.Z1 Z2隶属函数植Subordinate function value U(X1)U(X2)T1 T2 T3 T4-4.462 1 0.993 5 1.822 3 1.646 4 0.064 7 0.004 2 2.261 7-2.330 6 0.000 0 0.868 1 1.000 0 0.972 0 0.521 6 0.508 4 1.000 0 0.000 0 0.146 8 0.766 8 1.000 0 0.698 4 4213
朱振家等[30]对油橄榄的研究表明,库源比升高,叶片生理变化存在时间效应,叶片进行光合作用的能力短期内提高,可溶性糖和淀粉含量显著下降,但后期叶片衰老加速,净光合速率下降。本试验所有留果处理在P1、P2和P3的净光合速率、叶绿素含量均较高,而在果实采收后净光合速率显著降低,与朱振家等[30]研究结果一致。有研究表明,叶片中碳水化合物积累过多,会产生反馈抑制效应,进而造成叶片净光合速率下降[17]。此外植物叶片中光合碳同化的关键酶Rubisco作为光合速率的生化因子,其活性的大小直接影响净光合速率,采后阶段的外界环境温度(35~45 ℃)超过了Rubisco 酶的最适活化温度(25~30 ℃),使其活性降低,也会导致净光合速率的下降[31-32]。本试验中,果实采收后所有处理叶片的可溶性糖含量均较高,而水分利用效率、表观光能利用效率和表观CO2利用效率均较低,外界温度过高,均可能造成净光合速率下降。
有研究发现,有果与无果叶片在不同季节的光合性能的差异是由吸收CO2 的叶面积不同造成的[33]。库源比增大,树体发育后期的叶面积则相对较小[34],进而净光合效率降低。本试验中,T1 在P1和P2 的光合速率均处于较高水平,在P3 则处于较低水平,与前人研究结果一致[35]。而T2叶片在P1和P2 的净光合速率均最低,而在P3 和P4 则处于较高水平,与前人研究结果相反。T2 叶片在P1 和P2 的叶绿素含量、水分利用效率和表观CO2利用效率均较高,但表观光能利用效率处于相对较低水平,叶片中可溶性糖含量处于最高水平,因此,推测T2 叶片P1 和P2 时期光合能力弱的主要原因可能是叶片中碳水化合物的过度积累和对外界光能的低利用效率。T2在P3和P4阶段,叶片叶绿素含量较高,水分利用效率、表观光能利用效率和表观CO2利用效率均处于较高水平,进而净光合速率升高。T5叶片在4个时期的净光合速率、碳水化合物含量、水分利用效率、表观光能利用效率和表观CO2利用效率均处于相对较高水平,且试验中观察到该处理下树势偏旺,营养生长势强,推测该处理下叶片产生的同化物主要用于枝叶及根系的生长发育[36-38]。
生产实践中,负载量的高低对果实品质有重要影响。诸多研究表明,降低负载量能显著提高果实内在与外在品质[1,39]。本试验中,通过降低桃树体负载量,果实单果质量、SSC、可溶性糖含量、糖酸比均显著提高,与前人研究结论一致。也有研究表明,负载量降低到一定程度后,果实品质不再随着负载量的降低而升高,果实品质下降[18],试验发现,在T4的负载量低于T3的情况下,除单果质量和山梨醇含量显著高于T3外,其他品质指标均与其差异不显著或显著降低,与以上学者的研究结果较一致。推测在一定的范围内,降低负载量,桃果实品质提高且生长发育达到饱和状态[40],低于一定范围,果实品质缓慢升高或降低。这意味着果树的生长和产量不仅取决于同化物的生产,而且还取决于果实中同化物的消耗[41]。本研究发现,降低负载量不仅显著提高了果实中糖组分的积累水平,还改变了总糖的组分比例。T2条件下,果实中蔗糖和山梨醇含量显著高于T1,T3 果实中4 种糖组分均显著高于不疏果处理,而T4果实中蔗糖、果糖和山梨醇含量显著高于T1,说明改变树体负载量,果实中碳水化合物的代谢发生改变,进而影响果实风味品质。本试验中,T3 的糖酸比显著高于其他处理,风味最佳。
不同负载量对树体花芽、叶芽分化及结果枝类型组成有一定影响。有研究表明,降低负载量可促进果树花芽形成,提高次年产量[42]。本试验中,随着负载量的降低,花芽数量升高,叶芽数量降低,与前人的研究结果一致[43]。果实采收后,叶片进行光合作用产生的同化物储存在树体中,用于花芽、叶芽的分化及来年春季的萌发和生长[44],保持树体足够的碳水化合物积累,对翌年果实的数量及产量有重要影响。此外,树体负载量可显著影响不同枝型营养枝的新梢数[45],进而影响树体不同结果枝组成的比例。有研究表明,随着树体留果量的增加,新梢长度和总枝条数量逐渐减少,枝类组成中的短结果枝数量增幅明显[46]。本试验中,随着负载量的升高,枝类组成中短结果枝数量增加,长果枝数量减少,与前人的研究结果一致。结果枝是树体来年营养生长的基础,结果枝组成不仅直接影响树体翌年生长的内部环境还影响树体的生长发育,各类结果枝的高比例存在均不利于树体的协调生长,最终影响果实的品质与产量。因此,维持树体花芽、叶芽及不同种类结果枝组成比例的平衡是保持果实品质与产量的前提。
“库-源”关系是叶片光合作用的关键调控因子之一[47-48],负载量的高低决定树体的库源比,进而影响叶片进行光合作用的能力。叶片进行光合作用产生碳水化合物,一方面用于树体自身的营养生长,另一方面用于果实的生长发育。果实进行糖代谢的基础源于源叶的同化物,充足的碳源物质是提高果实糖代谢水平的前提,果实生长发育的过程实质上是叶片制造的同化物向果实运输的过程[49]。前人[50]对柑橘的研究表明,保持叶片高碳水化合物水平可提高果实品质。本试验中,桃树体负载量降低,叶片中总糖含量升高,转运至果实中的碳水化合物含量升高,果实品质提高,与前人研究结果一致。树体低负载量下,更多的碳被输送到单个果实中[51],果实鲜质量,SSC、葡萄糖、果糖和蔗糖均随碳水化合物的降解而增加[52],果实品质提高。此外果实采收后,桃叶片进行光合作用产生的部分碳水化合物贮藏在树体中,供花芽、叶芽分化和结果枝生长所需,充足的碳水化合物有利于提高翌年新梢萌芽率和花芽质量[53],进而提高翌年果实的品质与产量。因此,果实品质及树体后期的持续发育均与叶片输出和转运碳水化合物的能力密切相关,适宜的负载量是树体生长发育及果实品质与产量形成的基础。
研究表明,T3(留果约50%)叶片进行光合作用的能力及叶绿素含量在四个时期均处于较高水平,且叶片中可溶性糖含量在后两个时期均处于较低水平,而果实中可溶性糖含量高,说明叶片在该负载量下生产和输出碳水化合物的能力较高,有相对较高的源强。该负载量下,果实的综合品质较高,树体花芽、叶芽和枝类组成比例也较均衡。综合比较认为,田间栽培中,霞晖8 号桃成年树留果50%左右(约8500个·666.7 m-2),可获得较好的果实品质,能保证较高的产量,且有助于树体的营养积累。
[1] 伍涛,陶书田,张虎平,宋跃,姚改芳,张绍铃.疏果对梨果实糖积累及叶片光合特性的影响[J]. 园艺学报,2011,38(11):2041-2048.WU Tao,TAO Shutian,ZHANG Huping,SONG Yue,YAO Gaifang,ZHANG Shaoling. Effects of fruit thinning on fruit sugar accumulation and leaf photosynthetic characteristics of pear[J].Acta Horticulturae Sinica,2011,38(11):2041-2048.
[2] ANDRADE D,COVARRUBIAS M P,BENEDETTO G,PEREIRA E G,ALMEIDAA M.Differential source-sink manipulation affects leaf carbohydrate and photosynthesis of earlyand late-harvest nectarine varieties[J]. Theoretical and Experimental Plant Physiology,2019,31(2):341-356.
[3] RIVAS F,GRAVINA A,AGUSTI M. Girdling effects on fruit set and quantum yield efficiency of PSII in two citrus cultivars[J].Tree Physiology,2007,27(4):527-535.
[4] PALLAS B,BLUY S,NGAO J,MARTINEZ S,CLEMENT-VIDAL A,KELNER J J,COSTES E. Growth and carbon balance are differently regulated by tree and shoot fruiting contexts:an integrative study on apple genotypes with contrasted bearing patterns[J].Tree Physiology,2018,38(9):1395-1408.
[5] BAIRAM E,LEMORVAN C,DELAIRE M,BUCK-SORLIN G. Fruit and leaf response to different source-sink ratios in apple,at the scale of the fruit-bearing branch[J]. Frontiers in Plant Science,2019,10(14).
[6] VEMMOS S N,PAPAGIANNOPOULOU A,COWARD S. Effects of shoot girdling on photosynthetic capacity,leaf carbohydrate,and bud abscission in pistachio(Pistacia vera L.)[J].Photosynthetica,2012,50(1):35-48.
[7] MOSCATELLO S,PROIETTI S,AUGUSTI A,SCARTAZZA A,WALKER R P,FAMIANI F,BATTISTELLI A. Late summer photosynthesis and storage carbohydrates in walnut (Juglans regia L.):Feed-back and feed-forward effects[J]. Plant Physiology and Biochemistry,2017,118:618-626.
[8] MATSUDA R,SUZUKI K,NAKANO A,HIGASHIDE T,TAKAICHI M. Responses of leaf photosynthesis and plant growth to altered source-sink balance in a Japanese and a Dutch tomato cultivar[J]. Scientia Horticulturae,2011,127(4):520-527.
[9] DAYER S,PRIETO J A,GALAT E,PENA J P. Leaf carbohydrate metabolism in Malbec grapevines:combined effects of regulated deficit irrigation and crop load[J]. Australian Journal of Grape and Wine Research,2016,22(1):115-123.
[10] SAA S,BROWN P H. Fruit presence negatively affects photosynthesis by reducing leaf nitrogen in almond[J]. Functional Plant Biology,2014,41(8):884-891.
[11] DING N,CHEN Q,ZHU Z L,PENG L,GE S F,JIANG Y M.Effects of crop load on distribution and utilization of C-13 and N-15 and fruit quality for dwarf apple trees[J]. Scientific Reports,2017,7(1):9.
[12] KASAI M. Regulation of leaf photosynthetic rate correlating with leaf carbohydrate status and activation state of Rubisco under a variety of photosynthetic source/sink balances[J].Physiologia Plantarum,2008,134(1):216-226.
[13] 彭丽丽,姜卫兵,韩健.源库关系变化对果树产量及果实品质的影响[J].经济林研究,2012,30(3):134-140.PENG Lili,JIANG Weibing,HAN Jian. Effects of source-sink relationship change on yield and quality in fruit tree[J]. Nonwood Forest Research,2012,30(3):134-140.
[14] JORQUERA- FONTENA E,PASTENES C,MERINO- GERGICHEVICH C,FRANCK N.Effect of source/sink ratio on leaf and fruit traits of blueberry fruiting canes in the field[J].Scientia Horticulturae,2018,241:51-56.
[15] 杨始锦,毛娟,田凤娟,马宗桓,左存武,褚明宇,马彦妮,陈佰鸿.叶果比对‘瓦里短枝’苹果叶片生理特性和果实品质的影响[J].甘肃农业大学学报,2018,53(6):121-128.YANG Shijin,MAO Juan,TIAN Fengjuan,MA Zonghuan,ZUO Cunwu,CHU Mingyu,MA Yanni,CHEN Baihong. Effects leaf-fruit ratio on physiological characteristics and fruit quality of‘Vallee Spur’[J]. Journal of Gansu Agricultural University,2018,53(6):121-128.
[16] 乔洁. 影响苹果花芽分化的因素和促进措施[J]. 山西果树,2007(6):35-36.QIAO Jie. Factors affecting flower bud differentiation of apple and its promotion measures[J].Shanxi Fruits,2007(6):35-36.
[17] HAOUARI A,VAN LABEKE M C,STEPPE K,BEN MARIEM F,BRAHAM M,CHAIEB M. Fruit thinning affects photosynthetic activity,carbohydrate levels,and shoot and fruit development of olive trees grown under semiarid conditions[J].Functional Plant Biology,2013,40(11):1179-1186.
[18] 张社南,贺申魁,梅正敏,刘冰浩,区善汉,闫勇,唐燕玲.沃柑的叶果比及其对产量与果实品质的影响[J].南方园艺,2020,31(6):17-21.ZHANG Shenan,HE Shenkui,MEI Zhengmin,LIU Binghao,QU Shanhan,YAN Yong,TANG Yanling. Leaf-fruit ratio and its effect on yield and fruit quality of Mandarin orange[J].Southern Horticulture,2020,31(6):17-21.
[19] ZHANG B B,PENG B,ZHANG C H,SONG Z Z,MA R J.Determination of fruit maturity and its prediction model based on the pericarp index of absorbance difference (I-AD) for peaches[J].Plos One,2017,12(5):e0177511.
[20] NIJS I,ERRIS R,BLUM H,HENDREY G,IMPENS I. Stomatal regulation in a changing climate:a field study using Free Air Temperature Increase (FATI) and Free Air CO2 enrichment(FACE)[J]. Plant Cell and Environment,1997,20(8):1041-1050.
[21] LONG S P,BAKER N R,RAINES C A.Analyzing the responses of photosynthetic CO2 assimilation to long-term elevation of atmospheric CO2 concentration[J].Vegetatio,1993,14:33-46.
[22] 何维明,马风云.水分梯度对沙地柏幼苗荧光特征和气体交换的影响[J].植物生态学报,2000,24(5):630-634.HE Weiming,MA Fengyun.Effects of water gradient on fluorescence characteristics and gas exchange in Sabina vulgaris[J].Chinese Journal of Plant Ecology,2000,24(5):630-634.
[23] 庄猛,姜卫兵,花国平,曹晶,李刚.金边黄杨与大叶黄杨光合特性的比较[J].植物生理学通讯,2006,42(1):39-42.ZHUANG Meng,JIANG Weibing,HUA Guoping,CAO Jing,LI Gang. Comparison of the photosynthetic characteristics of Euonymus japonicus L. f. aureo-marginatus Rehd. and Euonymus japonicus L.[J]. Plant Physiology Communications,2006,42(1):39-42.
[24] LICHTENTHALER H K,WELLBURN A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochemical Society Transactions,1983,11:591-592.
[25] ZHANG B B,XU J L,ZHOU M,YAN D H,MA R J. Effect of light quality on leaf photosynthetic characteristics and fruit quality of peach [Prunus persica(L.)Battch][J]. Photosynthetica,2018,56(4):1113-1122.
[26] ZHANG B B,GUO J Y,MA R J,CAI Z X,YAN J,ZHANG C H. Relationship between the bagging microenvironment and fruit quality in 'Guibao' peach Prunus persica (L. ) Batsch[J].The Journal of Horticultural Science&Biotechnology,2015,90(3):303-310.
[27] 谢季坚.农业科学中的模糊数学方法[M].武汉:华中理工大学出版社,1993.XIE Jijian. Method of fuzzy mathematics in agricultural science[M]. Wuhan:Huazhong University of Science and Technology Press,1993.
[28] 钮福祥,华希新,郭小丁,邹景禹,李洪民,丁成伟.甘薯品种抗旱性生理指标及其综合评价初探[J]. 作物学报,1999,22(4):393-398.NIU Fuxiang,HUA Xixin,GUO Xiaoding,ZOU Jingyu,LI Hongmin,DING Chengwei.Studies on several physiological indexes of the drought resistance of sweet potato and its comprehensive evaluation[J]. Acta Agronomica Sinica,1999,22(4):393-398.
[29] 周广生,梅方竹,周竹青,朱旭彤.小麦不同品种耐湿性生理指标综合评价及其预测[J]. 中国农业科学,2003,36(11):1378-1382.ZHOU Guangsheng,MEI Fangzhu,ZHOU Zhuqing,ZHU Xutong. Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties[J].Scientia Agricultura Sinica,2003,36(11):1378-1382.
[30] 朱振家,姜成英,史艳虎,吴文俊,陈年来.库源比改变对油橄榄产量及源叶光合作用的调节[J]. 中国农业科学,2015,48(3):546-554.ZHU Zhenjia,JIANG Chengying,SHI Yanhu,WU Wenjun,CHEN Nianlai. Response of yield and leaf photosynthesis to sink-source ratio altering demand in olive[J]. Scientia Agricultura Sinica,2015,48(3):546-554.
[31] CRAFTS-BRANDNER S J,SALVUCCI M E. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(24):13430-13435.
[32] 张斌斌,马瑞娟,沈志军,蔡志翔.窄叶桃叶片秋季光合特性研究[J].果树学报,2011,28(5):763-769.ZHANG Binbin,MA Ruijuan,SHEN Zhijun,CAI Zhixiang.Study on photosynthetic characteristics in leaves of willow-leaf peach in autumn[J]. Journal of Fruit Science,2011,28(5):763-769.
[33] MARINO G,LA MANTIA M,CARUSO T,MARRA F P. Seasonal dynamics of photosynthesis and total carbon gain in bearing and nonbearing pistachio (Pistacia vera L. ) shoots[J]. Photosynthetica,2018,56(3):932-941.
[34] WANG N,ZHAO M M,LI Q,LIU X,SONG H J,PENG X Q,WANG H,YANG N,FAN P X,WANG R Q,DU N.ffects of defoliation modalities on plant growth,leaf traits,and carbohydrate allocation in Amorpha fruticosa L.and Robinia pseudoacacia L.seedlings[J].Annals of Forest Science,2020,77(2):15.
[35] 张秀美,王宏,刘志,于年文,李宏建,里程辉.岳阳红苹果矮化栽培与负载量关系研究[J]. 果树学报,2021,38(7):1077-1083.ZHANG Xiumei,WANG Hong,LIU Zhi,YU Nianwen,LI Hongjian,LI Chenghui. Study on the relationship between dwarfing cultivation and load of Yueyanghong apple[J]. Journal of Fruit Science,2021,38(7):1077-1083.
[36] YASUMURA Y. The effect of altered sink-source relations on photosynthetic traits and matter transport during the phase of reproductive growth in the annual herb Chenopodium album[J].Photosynthetica,2009,47(2):263-270.
[37] ASLANI L,GHOLAMI M,MOBLI M,SABZALIAN M R.The influence of altered sink-source balance on the plant growth and yield of greenhouse tomato[J]. Physiology and Molecular Biology of Plants,2020,26(11):2109-2123.
[38] LIANG B W,SUN Y,LI Z Y,ZHANG X Y,YIN B Y,ZHOU S S,XU J Z.Crop load influences growth and hormone changes in the roots of ″Red Fuji″ apple[J]. Frontiers in Plant Science,2020,11:665.
[39] ASLANI L,GHOLAMI M,MOBLI M,EHSANZADEH P,BERTIN N. Decreased sink/source ratio enhances hexose transport in the fruits of greenhouse tomatoes:integration of gene expression and biochemical analyses[J]. Physiologia Plantarum,2020,170(1):120-131.
[40] JAN N E,KAWABATA S. Relationship between fruit soluble solid content and the sucrose concentration of the phloem sap at different leaf to fruit ratios in tomato[J]. Journal of the Japanese Society for Horticultural Science,2011,80(3):314-321.
[41] SONNEWALD U,FERNIE A R. Next-generation strategies for understanding and influencing source- sink relations in crop plants[J].Current Opinion in Plant Biology,2018,43:63-70.
[42] WEN Y,SU S C,JIA T T,WANG X N. Allocation of photoassimilates in bud and fruit from different leaf nodes of Camellia oleifera[J].Hortscience,2021,56(4):469-477.
[43] 郭献平,吴中营,王东升,吕珍珍,郭鹏,王彬.圆黄梨二主枝水平棚架栽培合理负载量研究[J].现代农业科技,2020(23):54-56.GUO Xianping,WU Zhongying,WANG Dongsheng,LÜ Zhenzhen,GUO Peng,WANG Bin. Study on proper fruit load of Wonhwang pear with a flat-canopied pergola system[J]. Modern Agricultural Science and Technology,2020(23):54-56.
[44] WANG Y,WOOLLEY D J,MORGAN E R,EASON J R,FUNNELL K A. Defoliation affects carbohydrate reserves,crown bud development,and spring re- growth in gentian‘Velvet Glove’[J].Scientia Horticulturae,2016,203:102-109.
[45] STANDER O P J,BARRY G H,CRONJE P J R.Fruit load limits root growth,summer vegetative shoot development,and flowering in alternate-bearing‘Nadorcott’mandarin trees[J]. Journal of the American Society for Horticultural Science,2018,143(3):213-225.
[46] 李宏建,王宏,刘志,于年文,宋哲,张秀美,里程辉.‘嘎拉’苹果不同留果量对枝类组成、果实品质和产量的影响[J].果树学报,2020,37(12):1856-1864.LI Hongjian,WANG Hong,LIU Zhi,YU Nianwen,SONG Zhe,ZHANG Xiumei,LI Chenghui.Effects of fruit load on the composition of branches,fruit quality and yield of‘Regal Gala’apple[J].Journal of Fruit Science,2020,37(12):1856-1864.
[47] DAMATTA F M,CUNHA R L,ANTUNES W C,MARTINS S C V,ARAUJO W L,FERNIE A R,MORAES G.In field-grown coffee trees source- sink manipulation alters photosynthetic rates,independently of carbon metabolism,via alterations in stomatal function[J].New Phytologist,2008,178(2):348-357.
[48] QUENTIN A G,CLOSE D C,HENNEN L,PINKARD E A.Down-regulation of photosynthesis following girdling,but contrasting effects on fruit set and retention,in two sweet cherry cultivars[J]. Plant Physiology and Biochemistry,2013,73:359-367.
[49] 张永平,乔永旭,喻景权,赵智中.园艺植物果实糖积累的研究进展[J].中国农业科学,2008,41(4):1151-1157.ZHANG Yongping,QIAO Yongxu,YU Jingquan,ZHAO Zhizhong.Progress of researches of sugar accumulation mechanism of horticultural plant fruits[J]. Scientia Agricultura Sinica,2008,41(4):1151-1157.
[50] MOREIRA R A,RAMOS J D,DA CRUZ M D M,PANTOJA L D,DOS SANTOS A S.Leaf carbohydrates in‘Ponkan’mandarin fruit quality under chemical thinning[J]. Acta Scientiarum-Agronomy,2013,35(3):349-356.
[51] WUNSCHE J N,PALMER J W,GREER D H. Effects of crop load on fruiting and gas-exchange characteristics of‘Braeburn'/M. 26 apple trees at full canopy[J]. Journal of the American Society for Horticultural Science,2000,125(1):93-99.
[52] MESA K,SERRA S,MASIA A,GAGLIARDI F,BUCCI D,MUSACCHI S. Seasonal trends of starch and soluble carbohydrates in fruits and leaves of'Abbe Fetel'pear trees and their relationship to fruit quality parameters[J]. Scientia Horticulturae,2016,211:60-69.
[53] 陆玫丹,贺坤,裴庆松,贾惠娟.不同水平负载量对鄞红葡萄成熟和品质的影响[J].浙江大学学报(农业与生命科学版),2014,40(2):175-180.LU Meidan,HE Kun,PEI Qingsong,JIA Huijuan.Effects of different fruit loads on berry maturity and quality in grape cultivar Yinhong[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2014,40(2):175-180.
Effects of fruit loads on photosynthetic characteristics of peach leaves and fruit quality