琯溪蜜柚原产于福建省漳州市平和县,距今已有500多年的栽培历史,2019年的栽培面积达4.505万hm2,年产量184.78 万t,产值51.91 亿元[1-2]。氮(N)素是作物生长必需的营养元素之一,是蛋白质、核酸和叶绿素等的重要组成部分[3-4],充足的氮供应对作物生长至关重要。缺氮严重影响作物的光合过程和生理代谢,导致产量和品质下降[5]。施氮过多则会导致养分含量过高、增加成本、污染土壤和环境[6-8]。因此,及时准确地进行作物氮素诊断,是精准农业中一项重要而又关键的工作,意义重大[7-8]。高光谱技术可以直接定量分析地物微弱的光谱差异,这为定量分析植物氮含量与光谱参数之间的相关联系提供了好方法。由于氮本身的吸收特性很弱,通常表现为蛋白质对氨基酸的吸收特性。氮的敏感吸收波长在短波红外(1100~2500 nm)中易被叶片水分吸收特性所掩盖[9]。而可见光谱(VIS)和近红外(NIR)波段反射率通常用于间接估算叶片氮素含量,因为它们与叶片叶绿素含量呈显著的正相关[4, 9]。近几年,高光谱技术发展比较迅速,国内外也对植物氮素高光谱含量方面开展了研究[7]。研究发现不同作物叶片氮素的敏感波段不同,相同作物在不同生境中亦不完全相同[10-13]。如锦橙夏梢叶片敏感波段为442~556、560~658、661~714 和718~786 nm[10];大豆的氮素敏感波段为480~520 nm 和680~720 nm[11];同样是苹果,Li等[12]发现其叶片氮素敏感波段为475~550、660~725 和560~655 nm,而邢东兴等[13]的研究则表明敏感波段为522~570 nm 和705~729 nm。作物的氮素水平可以通过光谱指数进行反演[3, 14-16]。如利用双波段植被指数TBVI(811,856)可建立最佳的柑橘叶片含氮量预测模型[3];比值光谱指数RSI(720,557)、RSI(600,511)、RSI(688,644)和RSI(1811,1842)构建的估算模型反演玉米叶片氮含量效果较好[14];差值植被指数DVI(752, 751)、比值植被指数RVI(534,1350)和归一化植被指数NDVI(534,1349)与水稻叶片全氮相关性最显著[16]。王玉娜等[17]基于随机森林回归构建的多变量冬小麦氮素营养指数估算模型,模型决定系数为0.79,具有极好的预测能力。牛庆林等[18]发现采用随机森林回归可很好的估算冬小麦SPAD 值,估算模型R2为0.90,验证模型R2为0.88。
虽然对植物氮素含量的高光谱诊断较多,但由于影响高光谱诊断的因素较多,尤其是植物类型的不同,必然对氮素的影响有很大差异,然而现今并没有形成所有植物都可用的高光谱氮素估算模型。而蜜柚果园生长过程的变异性很大,进行均一的施肥管理无法满足不同果树个体的需求,往往导致施肥量过高或过低[3]。采用光谱参数对蜜柚叶片营养进行的相关研究还比较缺乏,同时对于蜜柚叶片氮素预测模型而言,如何选取建模方法不一而足,不同模型选取对预测结果精度的影响程度目前还不清楚,而偏最小二乘法(PLS)、随机森林法(RF)、BP 神经网络(BPNN)和支持向量机(SVM)等方法是处理光谱数据的良好化学计量学方法[19-20],选择合适的回归模型尤为重要。
笔者通过利用高光谱技术对琯溪蜜柚叶片氮素含量进行估测,分析了蜜柚叶片氮素含量与光谱反射率原始光谱、一阶微分光谱及光谱指数的相关性,挑选较为稳定的光谱参数,然后分别采用PLS、RF、BPNN 和SVM 回归算法建立蜜柚叶片氮素含量估算模型并进行了验证和对比,旨在探索蜜柚叶片氮素含量快速准确估测的技术方法,为大面积的蜜柚营养诊断和蜜柚生产管理提供依据。
平和县地处福建省漳州市西南部E116°54′~117°31′,N24°02′~24°35′,属南亚热带季风气候,年平均气温21.3 ℃,降雨量约1700 mm。是我国最大的柚类商品基地县,被誉为“中国琯溪蜜柚之乡”,产量约占全国总量的25%。
选用琯溪蜜柚[Citrus grandis (L.) Osbeck.‘Guanximiyou’]红心蜜柚品种,大小株高基本一致,种植时间为10 a(年)。实验样品蜜柚叶片采集时间为2020 年4 月、7 月和11 月,分别对应花期、果实膨大期和花芽分化期。采集点位于平和县霞寨镇黄庄村试验基地(N 24°21′32.18′′,E 117°08′19.12′′)。采集每株树体东西南北和上下层共10 枚叶片作为一个样本,选取位于顶梢起向下数的第3和第4片大小均匀的健康叶片。叶片采集后装入保鲜袋并进行编号,测试前洗净擦干。一共选取了150组叶片样本,随机将150 个总样分为建模组(含120 个样本)和预测组(含30个样本)。
数据采集仪器为野外地物光谱仪Field Spec 3(美国Analytical Spectral Device),该光谱仪波段范围在350~2500 nm,其中,350~1000 nm 光谱采样间隔为1.4 nm,光谱分辨率为3 nm,1000~2500 nm 光谱采样间隔为2 nm,光谱分辨率为10 nm。蜜柚叶片光谱采样时,展平置于平台,测量时注意避开叶脉。每叶片样品同时采集10条光谱曲线,剔除异常值后取其平均值作为蜜柚叶片样品的光谱反射率值[21]。采用Savitzky-Golay 卷积平滑法进行光谱预处理。
光谱测量结束后,立即在105 ℃杀青30 min,再将温度调回70 ℃烘至恒重,粉碎过筛,采用凯氏定氮法测定蜜柚叶片全氮含量。
常见的高光谱特征参数包括基于高光谱位置变量、基于高光谱面积变量、基于高光谱植被指数变量3 种类型[22-23],文中采用的光谱特征参数见表1。光谱植被指数是依据目标地物的光谱特性将某几个波段利用数学方式组合成的光谱指数,具有指示植物体内某种生化组分的情况、减少背景干扰和突出目标信息等作用[24]。笔者在本研究中选取了差值植被指数、比值植被指数和归一化植被指数3 种常用的光谱植被指数(表1)与蜜柚叶片氮元素含量进行相关性分析并筛选模型变量。
表1 选取的高光谱特征参数及说明
Table 1 The selected hyperspectral characteristic parameters and description
光谱特征参数类型Type of spectral characteristic parameter光谱位置变量Spectral position variable光谱面积变量Spectral area variable植被指数变量Vegetation index variable光谱特征参数名称Name of spectral characteristic parameter蓝边幅值Db,Blue edge amplitude黄边幅值Dy,Yellow edge amplitude红边幅值Dr,Red edge amplitude蓝边位置λb,Blue edge position黄边位置λy,Yellow edge position红边位置λr,Red edge position绿峰反射率Rg,Green peak reflectance红谷反射率Rr,Red valley reflectance蓝边面积SDb,Blue edge area黄边面积SDy,Yellow edge area红边面积SDr,Red edge area差值植被指数DVI,Difference vegetation index比值植被指数RVI,Ratio vegetation index归一化植被指数NDVI,Normalized difference vegetation index VI1=Rg/Rr VI2=(Rg-Rr)/(Rg+Rr)VI3=SDr/SDb VI4=(SDr-SDb)/(SDr+SDb)光谱特征参数说明Description of spectral characteristic parameter 490~530 nm内一阶导数光谱中的最大值Maximum value in the first derivative spectrum in 490-530 nm 560~640 nm内一阶导数光谱中的最大值Maximum value in the first derivative spectrum in 560-640 nm 680~760 nm内一阶导数光谱中的最大值Maximum value in the first derivative spectrum in 680-760 nm Db对应的波长位置Wavelength position corresponding to Db Dy对应的波长位置Wavelength position corresponding to Dy Dr对应的波长位置Wavelength position corresponding to Dr 510~560 nm光谱反射率的最大值Maximum spectral reflectance in 510-560 nm 650~690 nm光谱反射率的最小值Minimum spectral reflectance in 650-690 nm 490~530 nm内一阶导数的值总和Sum of first derivative values in 490-530 nm 560~640 nm内一阶导数的值总和Sum of first derivative values in 560-640 nm 680~760 nm内一阶导数的值总和Sum of first derivative values in 680-760 nm DVI(λ1,λ2)=Rλ1-Rλ2 RVI(λ1,λ2)=Rλ1/Rλ2 NDVI(λ1,λ2)=(Rλ1-Rλ2)/(Rλ1+Rλ2)Rg与Rr的比值Ratio of Rg to Rr Rg与Rr的归一化值Normalized values of Rg and Rr SDr与SDb的比值Ratio of SDr to SDb SDr与SDb的归一化值Normalized values of SDrand SDb
一阶微分光谱能够降低环境因素等对目标光谱反射率的影响。蜜柚叶片高光谱数据一阶微分计算:公式中,R′是Ri的一阶微分,Ri为i nm 处的光谱反射率,λi是第i个通道的波长。
均方根误差(RMSE)和相对误差(RE,%)计算公式:
式中,和yi 分别为估算值和实测值,n 为样本数。
用SPSS、DPS软件相结合进行相关分析或其他统计分析。
对蜜柚叶片氮素含量与其原始(图1)和一阶微分光谱进行了相关分析(图2)发现,蜜柚叶片的原始光谱反射率与叶片氮素含量为负相关的关系(图1),且在波段404~736 nm 达到了显著负相关水平(p <0.05),其中,在波段508~642 nm 和691~722 nm 达到了极显著负相关水平(p <0.01),最大负相关系数分别为(-0.683,569 nm)和(-0.688,704 nm)。因此569 nm和704 nm这2个波长可以作为原始光谱中估测蜜柚叶片氮素含量的敏感波长。
图1 蜜柚叶片含氮量与原始光谱反射率的相关关系
Fig.1 Correlation between N content and original spectral reflectance of pomelo leaves
图2 蜜柚叶片含氮量与一阶光谱反射率的相关关系
Fig.2 Correlation between N content and first-order spectral reflectance of pomelo leaves
分析表明,在波段401~406、408~420、443~456、480~554、680~706 nm,蜜柚叶片氮素与一阶光谱反射率达到了显著负相关水平(p <0.05)(图2),其中在波段440~455、490~553、681~705 nm 达到了极显著负相关水平(p <0.01),其中最大负相关系数(-0.72,695 nm),其次为(-0.70,541 nm)。在波段569~671、726~758 nm 达到了显著正相关水平(p <0.05),其中在波段586~627、633~671、731~758 nm达到了极显著正相关水平(p <0.01),其中最大正相关系数为(0.73,617 nm),其次为(0.72,753 nm)。因此选择541、695、617、753 nm这4个波长可以作为一阶光谱中估测蜜柚叶片氮素含量的敏感波长。而在800 nm之后其相关性变化无明显正负规律。
常见的高光谱特征参数包括基于高光谱位置变量、基于高光谱面积变量、基于高光谱植被指数变量3种类型[22-23],文中采用的光谱特征参数见表1。
选取了原始光谱2 个敏感波长(569 nm 和704 nm)、一阶微分光谱4 个敏感波长(541、617、695、753 nm),进行了光谱参数的构建,建立了差值植被指数DVI(λ1, λ2)、比值植被指数RVI(λ1, λ2)和归一化植被指数NDVI(λ1,λ2)等植被指数,分析了光谱特征参数与蜜柚叶片氮素含量的相关关系(表2)。分析发现,所选三边参数中只有黄边参数Dy(黄边幅值)和λy(黄边位置)没有达到极显著相关关系,红边参数与蓝边参数均达到极显著相关关系,其中Db(蓝边幅值)、λr(红边位置)、Rg(绿峰幅值)、SDb(蓝边面积)、绿峰与红谷幅值Rg/Rr、(Rg-Rr)/(Rg+Rr)(归一化绿峰与红谷幅值)、SDr/SDb(红边与蓝边面积比值)和(SDr-SDb)/(SDr+SDb)(归一化红边与蓝边面积比值)的相关系数超过0.7,具有较好估算蜜柚氮素含量的能力,均达到极显著水平。分析发现植被指数DVI′ 541,753、DVI′ 695,753、DVI′ 541,617、DVI′ 541,695、DVI′ 617,695、RVI′695,753、NDVI′541,753、NDVI′695,753的相关系数也超过了0.7,相关性较显著。
表2 光谱特征参数及敏感波段植被指数与蜜柚氮素含量相关关系
Table 2 Correlation between spectral characteristic parameters,sensitive band vegetation indices and N contents of pomelo leaves
注:表中*和**分别表示显著和极显著相关。
Note: * and ** in the table indicated significant and extremely significant correlation respectively.
光谱特征参数名称Name of spectral characteristic parameter Db Dy Dr λb λy λr Rg Rr SDb SDy SDr VI1 VI2 VI3 VI4 R569 R704 R′541 R′617 R′695 R′753相关系数r Correlation coefficient-0.712**0.256-0.542**0.499**-0.194 0.714**-0.715**-0.535**-0.719**-0.549**0.586**-0.725**-0.728**0.729**0.701**-0.683**-0.688**-0.700**0.730**-0.720**0.720**光谱特征参数名称Name of spectral characteristic parameter DVI569,704 DVI′541,753 DVI′617,753 DVI′695,753 DVI′541,617 DVI′541,695 DVI′617,695 RVI569,704 RVI′541,753 RVI′617,753 RVI′695,753 RVI′541,617 RVI′541,695 RVI′617,695 NDVI569,704 NDVI′541,753 NDVI′617,753 NDVI′695,753 NDVI′541,617 NDVI′541,695 NDVI′617,695相关系数r Correlation coefficient 0.676**0.716**0.422*0.725**0.735**0.720**0.771**0.614**0.500**0.449*0.759**0.537**0.063 0.584**0.613**0.704**0.694**0.776**0.472*0.063 0.583**
为了克服单变量回归模型只考虑一个变量对于氮素含量值的影响,选择了光谱参量中相关性(r >0.73)好的变量(NDVI′ 695,753、RVI′ 695,753、DVI′ 617,695、DVI′541,617、R′617),分别采用偏最小二乘法(PLS)、BP神经网络(BPNN)、随机森林(RF)、支持向量机(SVM)等方法,对比建立了蜜柚叶片氮素含量高光谱估算模型(表3)。分析发现,随机森林法估算蜜柚叶片氮素含量,其建模决定系数R2、均方根误差RMSE和相对误差RE分别为0.83、0.97和3.01%,建模精度最高。表明采用随机森林法的蜜柚氮素含量估算模型具有较高可靠性。而SVM 估算蜜柚叶片氮素含量,其建模R2、RMSE 和RE 分别为0.81、1.02和3.04%,建模精度次之;而BPNN法估算蜜柚叶片氮素含量,其建模R2、RMSE 和RE 分别为0.80、1.08和3.05%;PLS 法估算蜜柚叶片氮素含量,其建模R2、RMSE和RE分别为0.75、1.16和3.13%。各种模型验证结果如图3 所示,预测值和实测值拟合较好(图3)。其中随机森林验证模型,与PLS、BPNN 和SVM 相比,RF 具有较高的R2,较低的RMSE 以及较低RE,说明基于RF 的蜜柚叶片氮素含量估算模型比PLS、BPNN和SVM模型精度高。
图3 蜜柚叶片氮素实测值与预测值比较
Fig.3 Comparison of measured and predicted N values of pomelo leaves
表3 蜜柚叶片氮素含量不同回归模型的估算与验证
Table 3 Estimation and validation of different regression models for N content in pomelo leaves
回归模型Regression model偏最小二乘法Partial least square method,PLS BP神经网络BP neural network,BPNN随机森林法Random forest,RF支持向量机Support vector machine,SVM估算模型R2 Estimation model R2 0.75 0.80 0.83 0.81估算模型RMSE Estimation model RMSE 1.16 1.08 0.97 1.02估算模型RE Estimation model RE%3.13 3.05 3.01 3.04验证模型R2 Validation model R2 0.79 0.84 0.85 0.82验证模型RMSE Validation model RMSE 1.11 0.94 0.87 0.99验证模型RE Validation model RE/%3.08 2.99 2.85 3.03
笔者在本研究中分析了蜜柚叶片氮素含量与光谱反射率原始光谱、一阶微分光谱及光谱指数的相关性,挑选出较为稳定的光谱参数,然后分别采用PLS、RF、BPNN 和SVM 回归算法建立蜜柚叶片氮素含量估算模型并进行了验证。发现,蜜柚叶片全氮含量与原始光谱和一阶微分光谱反射率的最大相关系数绝对值分别为0.688和0.730。一阶微分光谱反射率与蜜柚叶片氮素含量有更优的正负相关。本研究结果与易时来等在锦橙[10]上有相似地方,但也有不同。有多方面的因素可造成差异,如不同测量仪器、不同试验样品、不同季节、不同环境及不同试验方法等。一阶微分相关性更好主要原因是由于单波段包含的信息简单且易受外界因素影响,但通过对叶片光谱数据求微分、多波段组合等方法构建光谱参数,可减少背景噪声的影响,并使波段间的差异表现得更加明显且具解决重叠的光谱特征,提高了信息提取率,且包含不同波段的信息[25]。因此,光谱变换能提供比原始光谱更为敏感的特征,可以提高作物氮素估算的精度。同样郑一力等[26]证明竹叶片高光谱反射率一阶微分、对数一阶微分和二阶微分与化学法测定氮含量的相关性较显著。
光谱指数通过特征波段的组合可以在一定程度上消除周围环境条件、仪器等的影响[25]。笔者在本研究中选取了一系列高光谱参数,对蜜柚叶片氮素含量与高光谱参数相关分析表明,植被指数相关系数大于单波段,其中,相关系数r 较大的(r >0.73)是NDVI′695,753、RVI′695,753、DVI′617,695、R′617 、DVI′541,617。本研究的最佳光谱指数和波段与前人研究[2,14-16]有一定的不同,原因同上。如王巧男等[2]发现利用双波段植被指数TBVI(811,856)可建立最佳的柑橘叶片含氮量预测模型,孙小香等[16]发现差值植被指数DVI(752, 751)、比值植被指数RVI(534, 1350)和归一化植被指数NDVI(534,1349)与水稻叶片全氮相关性最显著。
目前在遥感模型建立过程中,算法是其很重要的步骤,选择一种适宜的算法,有助于提高遥感预测的精度[27]。影响植物叶片氮素含量的因素较多,造成了单变量模型可能还不精确。笔者发现,在建立的蜜柚叶片氮素含量的4 个模型中,R2都比较高,RMSE 也都较小,而且RE 均小于10%,表明拟合效果较好,模型稳定性也较高,预测能力较强,其估算模型的精确程度为RF>SVM>BPNN>PLS。其中运用RF 算法建立的蜜柚叶片氮素模型效果为最佳。采用机器学习建模方法明显优于线性回归建模方法的预测精度[28]。原因在于RF 能高效处理数据集,对数据的噪声鲁棒性较好[29]。而PLS 虽然解决了数据变量多和变量之间的重相关性等问题,且降低了背景影响[30-31],Li等[32]采用PLS回归有效地预测了冬小麦叶片的氮含量。而在实际应用中存在许多非线性问题,而线性回归模型解决非线性问题时表现能力较弱,从而阻碍了该模型的发展[31,33]。BPNN模型虽也具有较强的非线性解释能力,能有效改善低估和高估现象,这与模型特性、测定时期和所用数据有关,但是在训练过程中有可能过多地学习了细节[27],如孙小香等[16]发现利用5个指标构建的水稻叶片氮素BP 神经网络模型与多元线性回归相比没有优势,而经逐步回归后筛选出的2个指标构建的BP神经网络模型精度有很大提高,说明用BP神经网络构建植物叶片营养含量模型有优势,但需要选取合适的变量指标。郑一力等[26]证明基于主成分分析的BP 神经网络估测模型可较好地估测玉竹叶片的氮含量,验证R2为0.838;同样班松涛等[34]等发现基于光谱指数的神经网路模型对水稻叶片磷含量有较好的预测能力,验证R2为0.885。支持向量机具有出色的学习和预测性能,在分类和预测方面得到了广泛应用[35],也可以很好地应用于函数回归问题,但是也受到核函数和惩罚因子的制约[29, 35]。冯海宽等[29]基于特征光谱参数对苹果叶片叶绿素含量进行了估算,发现RF、PLS、BP 神经网络和SVM 估算模型的R2分别为0.94,0.61,0.66 和0.60,RF 算法模型用于估算苹果叶片叶绿素含量效果较好。同样,程立真等[36]基于植被指数建立了苹果叶片磷素含量随机森林模型,其估测R2为0.923 6,RMSE 为0.015 8、RE为6.915%。王丽爱等[27]基于RF 回归算法对小麦叶片SPAD值进行了估算,发现RF比SVM和BPNN法更精确,其拔节期估测R2为0.89,RMSE 为1.54,与本文研究类似。同时有研究表明,在RF算法应对大数据时有更为明显的优势,训练与预测速度快、效率高[28]。
本研究主要是蜜柚叶片氮素含量与光谱变量间的定量关系,并用同一区域、不同时期的样本数据对模型进行了对比验证,后续研究还需在不同地域、低空等条件下进行算法验证更加完善,进而促进高光谱技术在蜜柚营养监测上的应用,为蜜柚产区长势监测提供重要技术支撑。
蜜柚叶片原始光谱和一阶微分光谱与氮素含量在可见光范围内有多波段相关性显著,并出现多个极值。原始光谱曲线敏感波长569、704 nm,一阶微分曲线的敏感波长为541、617、695、753 nm。与蜜柚叶片氮素含量相关性较好的光谱参量是NDVI′695,753、RVI′695,753、DVI′617,695、R′617、DVI′541,617。建立的PLS、BPNN、RF 和SVM 回归估算蜜柚叶片氮素含量并对比验证,其估算模型的精确程度为RF>SVM>BPNN>PLS,以随机森林估算模型精度稍高于其他估算模型,其估算模型和验证模型的决定系数R2分别为0.83和0.85。研究结果为光谱监测蜜柚叶片氮素含量提供了技术依据。
[1] 平和县人民政府. 农业农村经济工作[Z]. 平和年鉴(2020),2021:167.People’s Government of Pinghe County. Agricultural and rural economic work[Z].Year Book of Pinghe(2020),2021:167.
[2] 张青,栗方亮,孔庆波,庄木来.不同减量施肥模式对蜜柚产量、品质及经济效益的影响[J]. 果树学报,2021,38(3):361-371.ZHANG Qing,LI Fangliang,KONG Qingbo,ZHUANG Mulai.Effect of different reduced fertigation modes on the yield,quality and economic benefits of honey pomelo[J]. Journal of Fruit Science,2021,38(3):361-371.
[3] 王巧男,叶旭君,李金梦,肖宇钊,何勇.基于双波段植被指数(TBVI)的柑橘冠层含氮量预测及可视化研究[J].光谱学与光谱分析,2015,35(3):715-718.WANG Qiaonan,YE Xujun,LI Jinmeng,XIAO Yuzhao,HE Yong. Estimation and visualization of nitrogen content in citrus canopy based on two band vegetation index(TBVI)[J].Spectroscopy and Spectral Analysis,2015,35(3):715-718.
[4] LI F L,WANG L,LIU J,WANG Y N,CHANG Q R.Evaluation of leaf N concentration in winter wheat based on discrete wavelet transform analysis[J].Remote Sensing,2019,11(11):1331.
[5] WANG H G,GUO Z J,SHI Y,ZHANG Y L,YU Z W. Impact of tillage practices on nitrogen accumulation and translocation in wheat and soil nitrate-nitrogen leaching in drylands[J]. Soil and Tillage Research,2015,153:20-27.
[6] BRINKHOFF J,DUNN B W,ROBSON A J,DUNN T S,DEHAAN R.Modeling mid-season rice nitrogen uptake using multispectral satellite data[J].Remote Sensing,2019,11(15):1837.
[7] 栗方亮,孔庆波,张青.光谱分析技术在作物氮素诊断上的应用研究进展[J].江西农业学报,2020,32(9):6-12.LI Fangliang,KONG Qingbo,ZHANG Qing. Research progress in application of spectral analysis technology in crop nitrogen diagnosis[J].Acta Agriculturae Jiangxi,2020,32(9):6-12.
[8] OSCO L P,RAMOS A P M,PINHEIRO M M F,MORIYA É A S,IMAI N N,ESTRABIS N,IANCZYK F,DE ARAÚJO F F,LIESENBERG V,JORGE L A C,LI J,MA L F,GONÇALVES W N,JUNIOR J M,CRESTE J E. A machine learning framework to predict nutrient content in valencia-orange leaf hyperspectral measurements[J].Remote Sensing,2020,12(6):906.
[9] YANG J,CHENG Y J,DU L,GONG W,SHI S,SUN J,CHEN B.Selection of the optimal bands of first-derivative fluorescence characteristics for leaf nitrogen concentration estimation[J].Applied Optics,2019,58(21):5720-5727.
[10] 易时来,邓烈,何绍兰,郑永强,张璇.锦橙叶片氮含量可见近红外光谱模型研究[J].果树学报,2010,27(1):13-17.YI Shilai,DENG Lie,HE Shaolan,ZHENG Yongqiang,ZHANG Xuan.Research on nitrogen content of leaf of Jincheng orange cultivar using visible near infrared spectroscopy model[J].Journal of Fruit Science,2010,27(1):13-17.
[11] 熊鹰,刘波,岳跃民.基于ASD 和FISS 的植被叶片氮素含量反演研究[J].生态环境学报,2013,22(4):582-587.XIONG Ying,LIU Bo,YUE Yuemin.Inversion of nitrogen content of plant leaves based on ASD and FISS[J].Ecology and Environmental Sciences,2013,22(4):582-587.
[12] LI B C,ZHU X C,YU R Y,GUO X Y,CAO S J,ZHAO H S.Prediction model of nitrogen content in apple leaves based on ground imaging spectroscopy[J]. Remote Sensing Science,2018,6(1):9-17.
[13] 邢东兴,常庆瑞.基于光谱分析的果树叶片全氮、全磷、全钾含量估测研究:以红富士苹果树为例[J].西北农林科技大学学报(自然科学版),2009,37(2):141-147.XING Dongxing,CHANG Qingrui. Research on predicting the TN,TP,TK contents of fresh fruit tree leaves by spectral analysis with red Fuji apple tree as an example[J]. Journal of Northwest A&F University (Natural Science Edition),2009,37(2):141-147.
[14] 张银杰,王磊,白由路,杨俐苹,卢艳丽,张静静,李格.基于高光谱分析的玉米叶片氮含量分层诊断研究[J].光谱学与光谱分析,2019,39(9):2829-2835.ZHANG Yinjie,WANG Lei,BAI Youlu,YANG Liping,LU Yanli,ZHANG Jingjing,LI Ge. Nitrogen nutrition diagnostic based on hyperspectral analysis about different layers leaves in maize[J]. Spectroscopy and Spectral Analysis,2019,39(9):2829-2835.
[15] TIAN Y C,GU K J,CHU X,YAO X,CAO W X,ZHU Y.Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice[J]. Plant and Soil,2014,376(1/2):193-209.
[16] 孙小香,王芳东,赵小敏,谢文,郭熙.基于冠层光谱和BP 神经网络的水稻叶片氮素浓度估算模型[J].中国农业资源与区划,2019,40(3):35-44.SUN Xiaoxiang,WANG Fangdong,ZHAO Xiaomin,XIE Wen,GUO Xi.The estimation models of rice leaf nitrogen concentration based on canopy spectrum and BP neural network[J]. Chinese Journal of Agricultural Resources and Regional Planning,2019,40(3):35-44.
[17] 王玉娜,李粉玲,王伟东,陈晓凯,常庆瑞.基于无人机高光谱的冬小麦氮素营养监测[J]. 农业工程学报,2020,36(22):31-39.WANG Yuna,LI Fenling,WANG Weidong,CHEN Xiaokai,CHANG Qingrui. Monitoring of winter wheat nitrogen nutrition based on UAV hyperspectral images[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(22):31-39.
[18] 牛庆林,冯海宽,周新国,朱建强,雍蓓蓓,李会贞. 冬小麦SPAD 值无人机可见光和多光谱植被指数结合估算[J].农业机械学报,2021,52(8):183-194.NIU Qinglin,FENG Haikuan,ZHOU Xinguo,ZHU Jianqiang,YONG Beibei,LI Huizhen. Combining UAV visible light and multispectral vegetation indices for estimating SPAD value of winter wheat[J].Transactions of the Chinese Society for Agricultural Machinery,2021,52(8):183-194.
[19] YIN C X,LIN J,MA L L,ZHANG Z,HOU T Y,ZHANG L F,LV X. Study on the quantitative relationship among canopy hyperspectral reflectance,vegetation index and cotton leaf nitrogen content[J].Journal of the Indian Society of Remote Sensing,2021,49(8):1787-1799.
[20] YE X J,ABE S,ZHANG S H.Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral imaging[J].Precision Agriculture,2020,21(2):198-225.
[21] 陈澜,常庆瑞,高一帆,落莉莉,郑煜.猕猴桃叶片叶绿素含量高光谱估算模型研究[J]. 西北农林科技大学学报(自然科学版),2020,48(6):79-89.CHEN Lan,CHANG Qingrui,GAO Yifan,LUO Lili,ZHENG Yu.Hyperspectral estimation model of chlorophyll content in kiwifruit leaves[J]. Journal of Northwest A&F University (Natural Science Edition),2020,48(6):79-89.
[22] 姜海玲,李耀,赵艺源,郑世欣,李悦.扬花期冬小麦冠层叶绿素含量高光谱遥感反演[J].吉林师范大学学报(自然科学版),2020,41(3):133-140.JIANG Hailing,LI Yao,ZHAO Yiyuan,ZHENG Shixin,LI Yue.Study on the inversion of winter wheat canopy chlorophyll content during flowering period based on hyperspectral remote sensing[J]. Jilin Normal University Jounral(Natural Science Edition),2020,41(3):133-140.
[23] 孙玉婷,杨红云,孙爱珍,梅芳,易文龙.水稻叶片SPAD 值的高光谱估算模型[J].南方农业学报,2020,51(5):1062-1069.SUN Yuting,YANG Hongyun,SUN Aizhen,MEI Fang,YI Wenlong. Hyperspectral estimation model for SPAD value of rice leaves[J]. Journal of Southern Agriculture,2020,51(5):1062-1069.
[24] 林灵辰,余坤勇,曾琪,姚雄,邓洋波,范华栋,刘健.基于叶片光谱反射率的毛竹氮元素含量估测研究[J].中南林业科技大学学报,2020,40(2):81-87.LIN Lingchen,YU Kunyong,ZENG Qi,YAO Xiong,DENG Yangbo,FAN Huadong,LIU Jian. Estimation of nitrogen content in moso bamboo based on leaf spectral refectance[J]. Journal of Central South University of Forestry & Technology,2020,40(2):81-87.
[25] 李哲,张飞,陈丽华,张海威.光谱指数的植物叶片叶绿素含量估算模型[J].光谱学与光谱分析,2018,38(5):1533-1539.LI Zhe,ZHANG Fei,CHEN Lihua,ZHANG Haiwei. Research on spectrum variance of vegetation leaves and estimation model for leaf chlorophyll content based on the spectral index[J].Spectroscopy and Spectral Analysis,2018,38(5):1533-1539.
[26] 郑一力,赵燕东,董玮,尘兴灿,李逸新.竹叶片氮含量高光谱估测方法对比研究[J].农业机械学报,2018,49(S1):393-400.ZHENG Yili,ZHAO Yandong,DONG Wei,CHEN Xingcan,LI Yixin. Comparison on hyperspectral estimation method of nitrogen content in bamboo leaf[J].Transactions of the Chinese Society for Agricultural Machinery,2018,49(S1):393-400.
[27] 王丽爱,马昌,周旭东,訾妍,朱新开,郭文善.基于随机森林回归算法的小麦叶片SPAD 值遥感估算[J]. 农业机械学报,2015,46(1):259-265.WANG Liai,MA Chang,ZHOU Xudong,ZI Yan,ZHU Xinkai,GUO Wenshan. Estimation of wheat leaf SPAD value using RF algorithmic model and remote sensing data[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(1):259-265.
[28] 刘昌华,方征,陈志超,周兰,岳学智,王哲,王春阳,MIAO Yuxin.ASD Field Spec3 野外便携式高光谱仪诊断冬小麦氮营养[J].农业工程学报,2018,34(19):162-169.LIU Changhua,FANG Zheng,CHEN Zhichao,ZHOU Lan,YUE Xuezhi,WANG Zhe,WANG Chunyang,MIAO Yuxin.Nitrogen nutrition diagnosis of winter wheat based on ASD Field Spec3[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(19):162-169.
[29] 冯海宽,杨福芹,杨贵军,李振海,裴浩杰,邢会敏.基于特征光谱参数的苹果叶片叶绿素含量估算[J]. 农业工程学报,2018,34(6):182-188.FENG Haikuan,YANG Fuqin,YANG Guijun,LI Zhenhai,PEI Haojie,XING Huimin. Estimation of chlorophyll content in apple leaves base on spectral feature parameters[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(6):182-188.
[30] PENG Y,ZHANG M,XU Z Y,YANG T T,SU Y L,ZHOU T,WANG H T,WANG Y,LIN Y Y. Estimation of leaf nutrition status in degraded vegetation based on field survey and hyperspectral data[J].Scientific Reports,2020,10(1):4361-4373.
[31] WATT M S,BUDDENBAUM H,LEONARDO E M C,ESTARIJA H J C,BOWN H E,GOMEZ-GALLEGO M,HARTLEY R,MASSAM P,WRIGHT L,ZARCO-TEJADA P J. Using hyperspectral plant traits linked to photosynthetic effciency to assess N and P partition[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,169(10):406-420.
[32] LI F,MISTELE B,HU Y C,CHEN X P,SCHMIDHALTER U.Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression[J]. European Journal of Agronomy,2014,52(1):198-209.
[33] LI X Y,FAN P P,LIU Y,HOU G L,WANG Q,LÜ M R.Prediction results of different modeling methods in soil nutrient concentrations based on spectral technology[J]. Journal of Applied Spectroscopy,2019,86(4):765-770.
[34] 班松涛,田明璐,常庆瑞,王琦,李粉玲.基于无人机高光谱影像的水稻叶片磷素含量估算[J].农业机械学报,2021,52(8):163-171.BAN Songtao,TIAN Minglu,CHANG Qingrui,WANG Qi,LI Fenling. Estimation of rice leaf phosphorus content using UAVbased hyperspectral images[J].Transactions of the Chinese Society for Agricultural Machinery,2021,52(8):163-171.
[35] 张卓然,常庆瑞,张廷龙,班松涛,由明明.基于支持向量机的棉花冠层叶片叶绿素含量高光谱遥感估算[J].西北农林科技大学学报(自然科学版),2018,46(11):39-45.ZHANG Zhuoran,CHANG Qingrui,ZHANG Tinglong,BAN Songtao,YOU Mingming. Hyperspectral estimation of chlorophyll content of cotton canopy leaves based on support vector machine[J]. Journal of Northwest A&F University (Natural Science Edition),2018,46(11):39-45.
[36] 程立真,朱西存,高璐璐,王凌,赵庚星.基于随机森林模型的苹果叶片磷素含量高光谱估测[J]. 果树学报,2016,33(10):1219-1229.CHENG Lizhen,ZHU Xicun,GAO Lulu,WANG Ling,ZHAO Gengxing. Hyperspectral estimation of phosphorus content for apple leaves based on the random forest model[J]. Journal of Fruit Science,2016,33(10):1219-1229.
Comparative study on several hyperspectral estimation models of nitrogen contents in Guanxi honey pomelo leaves