葡萄栽培历史有6000~8000 a(年)[1],是世界上栽培面积最大的果树作物之一。阳光玫瑰是目前国内市场上经济效益最高的鲜食葡萄品种,近年来其种植面积逐渐扩大至6.67万hm2以上[2],其水分需求量比其他品种大,在栽培过程中需保持水源充足[3]。
目前根域限制栽培是阳光玫瑰的主要栽培方式之一。根域限制是将葡萄根系控制在一定的容积内,通过控制地下部根系生长来调节地上部营养生长和生殖生长的一种栽培技术[4]。根域限制栽培技术超越了传统的“根深叶茂”的果树栽培理论,而限根器栽培作为根域限制栽培的一种方式,具有成本低、投产早、果实糖含量高、风味色泽好和肥水可高效利用等显著优点[5],通过根域限制栽培能更合理地调节水分[6]。湖南地区在阳光玫瑰软熟期(7—9月)会出现夏秋干旱,且成龄树叶幕面积大,蒸腾量大,在根域限制条件下,土壤水分经常出现亏缺状态,所以此时进行水分研究尤为必要。
以水调质是目前提高葡萄品质最安全的措施之一[7],对葡萄某些生长发育时期进行适宜程度的水分胁迫(土壤含水量为田间持水率的65%~<75%、土壤含水量为田间持水率的55%~<65%和土壤含水量为田间持水率的45%~<55%,分别为轻度胁迫、中度胁迫和重度胁迫),能够引起葡萄形态以及内部生理生化的变化。一定程度的水分胁迫能够抑制葡萄植株的营养生长,促使葡萄光合产物的分配向果实中转运以提升品质[8]。水分胁迫对植物的影响是多方面的,但其中受其影响较大的是光合作用。当植物受到一定程度的水分胁迫时,植物根系合成脱落酸(ABA)转运到保卫细胞中降低气孔导度,减少气孔蒸腾速率,以保持自身水势[9-10],同时提高水分利用效率[11]。在萌芽期、新梢生长期和开花期进行控水对酿酒葡萄品质影响不显著[12];在葡萄果实膨大期控水会大幅度降低贝利葡萄产量和总花色苷含量[13]。另外,对新梢生长期至开花坐果期控水能适度提高水分利用效率,对果实生长期控水可显著降低水分利用效率[14];对软熟期轻度控水(土壤含水量为田间持水率的65%~75%)可使梅鹿辄总糖含量提高22.4%,酸含量降低9.3%,同时保持适量的花色苷和单宁含量[15]。尽管前人对葡萄其他品种的最适土壤含水量进行了一定的研究,然而阳光玫瑰需水规律却鲜有报道。
笔者对阳光玫瑰软熟期(花后60~110 d)不同程度水分处理后,通过叶片光合特性和果实品质性状的差异分析,以明确在阳光玫瑰软熟期能提高果实品质的最适宜土壤含水量范围,为湖南地区根域限制条件下阳光玫瑰水分灌溉提供一定的理论依据和技术支撑。
试验于湖南农业大学干杉葡萄教学科研基地(东经113°11′54′′,北纬28°8′21′′)进行。栽培模式为限根器根域限制栽培(限根器直径2.0 m,高0.6 m)、“H”形水平棚架(株距6.0 m,行距6.0 m,棚高3.5 m,架高2.0 m),试验材料为树体长势较一致的10年生阳光玫瑰葡萄。
试验处理分为T1(土壤含水量为田间持水率的75%~85%,充分供水)、T2(土壤含水量为田间持水率的65%~<75%,轻度胁迫)、T3(土壤含水量为田间持水率的55%~<65%,中度胁迫)和T4(土壤含水量为田间持水率的45%~<55%,重度胁迫)4 组,以T1为对照,每个处理随机选择长势一致的3株树(共12 株)。在阳光玫瑰软熟期(花后60 d开始至花后110 d结束)进行处理,花后3 d使用20 mg·L-1 GA(赤霉素)+1 mg·L-1 CPPU(氯吡脲)进行无核保果处理,花后20 d 使用25 mg·L-1 GA+2.5 mg·L-1 CPPU进行膨大处理,其他栽培管理措施保持一致,每株树随机选择100 穗果(花后110 d 测量果实品质)用于后续试验。
1.3.1 土壤含水率的设置 土壤含水量在各试验小区进行定点定位实时观测,在限根器内土层10、20、30、40 和50 cm 处分别放置EM-50 温湿度传感器(METER Group,Inc.,美国)实时监测土壤含水率,获得传感器测量的5个平均值,同时用便携式TDR-300 水分传感器(Spectrum Technologies,lnc.,美国)辅助检测土壤含水率。在土壤含水率达到各处理土壤含水率下限时,进行灌水,灌水额度不超过各处理土壤含水率上限。
1.3.2 叶片光合指标检测 在处理后10~50 d(花后70~110 d),在各处理均匀随机选取结果枝条上无病虫害且角度一致的结果部位叶片15枚(基部往上第4~5片叶),每隔10 d用Li-6400型便携式光合仪(LICOR,lnc.,美国)定点法活体测定各处理葡萄叶片光合指标,测定参数包括光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)以及水分利用率(WUE),其中,WUE=Pn/Tr[16]。
1.3.3 果实品质检测 果粒大小测定:每个处理随机抽取10个果穗,共取100个果粒,测定果粒的纵横径。
果穗质量测定:每个处理随机摘取10 个果穗,测定果穗质量。
果实色差与可溶性固形物含量测定:每个处理随机抽取15个果穗,每个果穗上、中、下各取1粒,共取45 粒,色差用NR110 色差仪(深圳市三恩时科技有限公司,中国)测定(a*为红绿色,代表果锈程度;b*为黄蓝色,代表果实黄化程度),同时每粒果实用手持PAL-1 数显折射仪(ATAGO CO.,LTD.,日本)测定可溶性固形物含量;可滴定酸含量采用氢氧化钠滴定法[17]测定;维生素C(VC)含量采用碘量法[18]测定;丙二醛(MDA)含量采用硫代巴比妥酸法[19]测定。果皮厚度测定:每个处理随机取30 粒果实,去除果皮上残留果肉,用游标卡尺测量果皮厚度。果实硬度和果梗拉力测量:每个处理随机取30 粒果实,用ZP-50手持便携式硬度拉力计(香港艾固有限公司,中国香港)测定。
采用SPSS 26.0软件对上述试验数据进行统计分析。对各指标进行单因素方差分析,采用Duncan’s新复极差法进行多重比较,显著水平p <0.05。
不同水分处理阳光玫瑰果实在果粒大小和形状上并无明显差异,T2 处理后果实有部分变黄;T3 处理则整串果实明显黄化并产生少量果锈;T4处理果实不仅黄化,还出现明显的果锈和掉粒现象(图1)。在阳光玫瑰软熟期进行T3和T4处理会影响其商品价值,因此在软熟期进行T1或者T2处理较为适宜。
图1 不同水分处理成熟时(花后110 d)阳光玫瑰葡萄果实形态
Fig.1 Morphology of Shine Muscat grape clusters with different water treatments at the veraison ripening stage
在软熟期进行T3和T4处理不仅能增加其亮度(L*值升高),还能增加其a*值(由偏绿变偏红),且各种水分处理后其b*值也显著提升(偏黄程度增加)(表1)。在测量品质过程中表现出阳光玫瑰成熟果实经过适度胁迫后,可溶性固形物含量显著上升,且伴随着果锈产生和果粒变黄的现象。其可溶性固形物含量可能与果实的颜色有一定关系。
表1 软熟期不同程度水分处理成熟时(花后110 d)阳光玫瑰果实色差值
Table 1 The fruit chromatic aberration of
Shine Muscat at different water treatments fruit during veraison ripening stage
注:同一列数据后不同字母表示在p <0.05 水平下差异显著,数据为平均值±标准差。下同。
Note:The different letters in the same column indicate significant difference at p <0.05.Datas are average±standard deviation.The same below.
处理Treatment T1 T2 T3 T4 L*31.02±1.83 b 33.40±5.75 b 39.27±1.20 a 36.02±1.77 a a*-0.65±0.59 bc-0.61±0.93 c 3.95±1.01 a 4.08±1.35 a b*9.25±0.90 d 12.05±2.53 c 17.50±1.06 a 15.14±1.56 b
对其可溶性固形物含量与果皮的色泽进行回归分析,发现可溶性固形物含量与a*(红绿色)之间呈极显著线性关系(Sig.>0.01),拟合线性方程为:Y=1.239 X+18.953,决定系数R2=0.326。而与b*(黄蓝色)无显著关系(Sig.>0.05)(图2)。结果表明,阳光玫瑰果锈越多,其果实可溶性固形物含量越高。
图2 可溶性固形物含量与色差值a*的关系
Fig.2 Relationship between soluble solid content and chromatic aberration value a*
软熟期水分胁迫有利于MDA 的积累,且随着胁迫程度的加重,其含量的提升程度也随之发生显著变化,其中T2 处理使MDA 含量显著增加15.35%,T3 处理使MDA 含量显著增加32.47%,T4处理使MDA含量显著增加47.33%(图3)。
图3 不同程度水分处理阳光玫瑰软熟期果实丙二醛含量
Fig.3 Malondialdehyde content in mature fruit of Shine Muscat under different water treatments
T2 处理果皮厚度显著降低25.6%,果实硬度显著增加14.59%,但T4 处理与T1、T2、T3 处理相比,T4处理能显著降低穗质量和果实纵径大小,过度胁迫能使果实变小;T3 和T4 处理导致果实拉力分别显著减少21.2%、29.55%,使果实的储运能力降低(表2)。在阳光玫瑰软熟期进行T2处理能显著降低果皮厚度和提高果实产量。
表2 不同程度水分处理对阳光玫瑰成熟期果实外在品质指标的影响
Table 2 Influence on fruit external quality index of Shine Muscat treated with different water supply at maturity
处理Treatment T1 T2 T3 T4穗质量Bunch weight/g 726.67±131.7 ab 750.67±148.9 a 768.34±89.6 a 673.33±160.7 b单粒质量Single berry weight/g 7.53±1.15 a 8.98±0.84 a 8.28±1.35 a 8.16±1.06 a纵径Longitudinal diameter/mm 27.16±0.55 ab 28.17±0.48 a 27.11±0.47 ab 25.75±0.50 b横径Horizontl diameter/mm 21.69±0.52 a 21.91±0.46 a 21.00±0.44 a 20.34±0.47 a果皮厚度Pericarp thickness/mm 0.39±0.028 a 0.29±0.034 b 0.31±0.029 ab 0.33±0.023 ab果实硬度Stress tolerance/(kg·cm-2)1.193±0.12 b 1.367±0.40 a 1.200±0.18 b 1.184±0.15 b果实拉力pedicel tension/N 3.286±0.33 a 3.296±0.28 a 2.590±0.23 b 2.315±0.28 c
T2 处理使果实可溶性固形物含量显著提高8.0%,果实可滴定酸含量显著降低9.1%,固酸比显著提升18.8%(表3),在阳光玫瑰软熟期进行T2处理,使其成熟后品质和风味更佳。此外,T4处理的维生素C含量相比于充分供水对照显著增加81.82%(表3)。
表3 不同程度水分处理对阳光玫瑰成熟期果实内在品质指标的影响
Table 3 Influence on fruit inner quality index of Shine Muscat treated with different water supply at maturity
处理Treatment T1 T2 T3 T4 ρ(维生素C)Vitamin C content/(mg·mL-1)0.022±0.011 b 0.015±0.007 b 0.021±0.001 b 0.040±0.001 a w(可溶性固形物)Soluble solid content/%18.28±1.04 b 19.75±0.79 a 19.35±0.23 ab 18.75±0.73 ab ρ(可滴定酸)Titratable acid content/(g·L-1)0.552±0.019 a 0.502±0.029 b 0.547±0.007 a 0.576±0.001 a固酸比Solid-acid ratio 33.12±0.22 c 39.34±1.35 a 35.37±0.57 b 32.55±0.01 c
植物净光合能力的大小直接决定着同化产物的多少。在整个处理期间,各处理叶片Pn整体呈下降趋势,T1、T2、T3 和T4 处理分别下降37.33%、39.41%、44.60%和47.04%,不同程度水分处理叶片Pn表现为T1 >T2 >T3 >T4(图4)。在处理10 d后,T1、T2 处理Pn显著高于T3、T4,而T1、T2 之间无显著差异(图4)。较低的水分处理能降低阳光玫瑰葡萄叶片的净光合能力,导致其合成作用效率降低。
图4 软熟期不同程度水分处理对叶片净光合速率的影响
Fig.4 Influence on different water treatments on net photosynthetic rate during the veraison ripening stage
在整个胁迫期间,T1 处理Tr均处于较高水平。随着胁迫时间的延续和胁迫程度的加重,不同处理之间阳光玫瑰葡萄叶片Tr都有明显的下降趋势,表现为T1 >T2 >T3 >T4,在胁迫前期下降的趋势较大,后期趋于平缓。且T1 和T2 处理间Tr始终保持无显著差异,但处理10 d 后,T4 处理与T1、T2 处理间,Tr开始出现显著降低的现象(图5)。
图5 软熟期不同程度水分处理对叶片蒸腾速率的影响
Fig.5 Influence on different water treatments on transpiration rate during the veraison ripening stage
CO2作为植物叶片光合作用合成有机物原料,叶片中其含量的减少会影响光合速率和有机物的合成量。随着土壤含水率的下降,其Ci也随之下降,在处理前期,T4处理显著低于其他3个处理,但随着处理时间的延长,各处理间差异不显著,且T1、T2、T3和T4 处理间阳光玫瑰葡萄Ci均不同程度地呈现先下降后上升的“V”形趋势。整个处理期间,Ci在花后90 d 出现临界值和极值,相比T1 处理(胞间CO2的浓度为160.8 μmol·mol-1),T2、T3 和T4 处理Ci分别下降4.04%、11.94%和17.48%(图6)。而在处理后期,Ci又呈现升高的趋势,这可能与外界胁迫条件改变及自身的调节(气孔导度的变化规律)相关。
图6 软熟期不同程度水分处理对叶片胞间CO2浓度的影响
Fig.6 Influence on different water treatments on intercellular CO2 concentration during the veraison ripening stage
植物气孔导度(Gs)调节是自身保护机制调节的主要途径。在不同处理间,随着时间的持续,植物的Gs均呈现不同程度下降的趋势,表现为T1 >T2 >T3 >T4,在整个处理期间,T4 处理显著低于T3 和T1、T2 处理,而T1 与T2 之间基本无显著差异。与T1 处理Gs下降44.70%相比,T2、T3 和T4 处理分别下降46.77%、50.23%和47.11%(图7)。较少的水分供应能降低阳光玫瑰葡萄叶片气孔的开放程度。
图7 软熟期不同程度水分处理对叶片气孔导度的影响
Fig.7 Influence on different water treatments on stomatal conductance during the veraison ripening stage
葡萄的水分利用效率受净光合速率和蒸腾速率的影响。不同处理阶段,Pn和Tr的变化不同,因此二者的比值也会存在差异。在整个处理阶段,WUE随着胁迫程度的加剧而增加,即受水分胁迫较重的WUE 高于胁迫程度较轻的处理,表现为T4 >T3 >T2;而T1 处理WUE 呈现先上升后下降再上升再下降的稳定趋势,在胁迫处理前期,水分胁迫能显著提高WUE,但随着胁迫时间的增加,T4、T3 和T2 的WUE显著低于T1充分供水处理(图8)。
图8 软熟期不同程度水分处理对叶片水分利用效率的影响
Fig.8 Influence on different water treatments on water use efficiencies during the veraison ripening stage
许多研究表明,水分胁迫对植株造成一定程度的逆境,适当的水分胁迫能提高果实品质[20-21]。笔者在本研究中通过对软熟期阳光玫瑰葡萄进行不同程度水分处理,发现水分胁迫能够增加果皮中丙二醛含量,这可能是由于水分胁迫引起活性氧增加从而造成脂质过氧化,这与前人的研究结果一致[22]。在阳光玫瑰软熟期进行T3和T4灌水处理时会影响其商品价值。进行T2 处理能使果实可溶性固形物含量显著提高8.0%,果实可滴定酸含量显著降低9.1%,固酸比显著提升18.8%,果皮厚度显著降低25.6%,果实硬度显著增加14.59%,MDA 含量显著增加15.35%。这与张梅花等[23]在着色成熟期轻度亏水可使梅鹿辄中的总酚含量提高11.3%,可溶性固形物含量提高23.14%,可滴定酸含量降低22.99%和蔺宝军等[24]在转色成熟期对红地球进行干旱胁迫能显著提高可溶性固形物含量10.7%,可滴定酸减少12.2%的研究结果相似。阳光玫瑰为需水量较大的葡萄品种,本研究结果表明,适度的水分胁迫能够提升固酸比等果实品质且不影响产量,土壤含水量为田间持水率的65%~75%为最适宜的土壤含水率。
水分对光合作用的影响分为气孔因素和非气孔因素两大类[25],气孔因素是指植物在水分胁迫下调整气孔导度以减少CO2进入叶片的量,从而导致光合作用原料的减少,致使光合速率变小。非气孔因素是指由于植物受胁迫时间太长且程度太重,导致叶绿素、光合成酶和一些复合体含量减少,最终导致叶绿体超微结构的破坏[26]。由此可见,在植物受到胁迫生长前期主要是气孔因素导致的,而在生长后期,主要的限制因子是非气孔因素[27]。目前判断植株光合作用效率的降低是否受气孔因素限制的根据是净光合速率和气孔导度的下降是否受到胞间CO2含量负反馈调节[28]。本试验结果表明,随着阳光玫瑰软熟期胁迫时间的增加,植株叶片的Pn、Tr和Gs均呈现不同程度的下降趋势,Ci呈现先下降后上升的趋势,且随着胁迫的持续,这一趋势愈发明显。在胁迫前期,阳光玫瑰葡萄Pn和Tr都随着Gs的变化而变化,此阶段胁迫下Pn和Tr的降低主要是受Gs的限制。但随着胁迫时间的延长(花后90 d以后),在Pn、Tr和Gs都下降的同时,Ci却呈现上升的趋势。此阶段Pn、Tr的下降并不是由于Gs下降使CO2供应减少所致,而是非气孔因素原因阻碍CO2代谢消耗,导致其含量富集,表明到此阶段,阳光玫瑰葡萄叶片光合作用因为胁迫时间的增加和程度的加剧,其影响因素已经由气孔因素调节转变为非气孔因素调节,这与Yuan 等[29]和胡宏远等[30]的研究结果一致。WUE是由Pn和Tr共同作用的,另有研究也指出在葡萄生长前期亏水都能适度提高水分利用的效率;而胁迫后期亏水能显著降低水分利用效率[31]。阳光玫瑰软熟期水分胁迫后光合作用效率大幅度降低,而成熟后产量和品质显著提高是因为水分亏缺后调亏灌溉生长冗余和水分亏缺生长补偿效应[32],使光合产物向果实转运,促进植株的生殖生长,从而使葡萄优质丰产。
通过对阳光玫瑰软熟期不同程度水分处理后叶片光合特性和果实品质性状的差异比较,发现在阳光玫瑰软熟期进行T2处理(土壤含水量为田间持水率的65%~<75%)最为适宜。研究结果可为湖南地区根域限制条件下阳光玫瑰葡萄品质提升提供一定的理论依据和技术支撑。
[1] 刘夙.葡萄藤上的中国历史[J].中国科技教育,2018(8):68-69.LIU Su. Chinese history on the grapevine[J]. Chinese Science and Technology Education,2018(8):68-69.
[2] 刘凤之,王海波,胡成志.我国主要果树产业现状及“十四五”发展对策[J].中国果树,2021(1):1-5.LIU Fengzhi,WANG Haibo,HU Chengzhi. Current situation of main fruit tree industry in China and it’s development countermeasure during the“14th five- year plan”period[J]. China Fruits,2021(1):1-5.
[3] WU Y,ZHANG W,SONG S,XU W,ZHANG C,MA C,WANG L,WANG S . Evolution of volatile compounds during the development of Muscat grape‘Shine Muscat’(Vitis labrusca×V.vinifera)[J].Food Chemistry,2020,309:125778.
[4] 王世平,张才喜,罗菊花,邵浩,郭庆海,朱丽娜.果树根域限制栽培研究进展[J].果树学报,2002,19(5):298-301.WANG Shiping,ZHANG Caixi,LUO Juhua,ZHAO Hao,GUO Qinghai,ZHU lina. Advances in research of rooting-zone restricted fruit growing[J]. Journal of Fruit Science,2002,19(5):298-301.
[5] 王世平. 不同生态条件下葡萄根域限制栽培模式与管理[J].中国南方果树,2006,35(2):52-55.WANG Shiping. Restricted cultivation mode and management in grape root region under different ecological conditions [J].South China Fruits,2006,35(2):52-55.
[6] 王昊,靳韦,马文礼,王世平,陈永伟,卜建华. 宁夏地区‘夏黑’葡萄设施根域限制栽培技术[J].中外葡萄与葡萄酒,2020(4):44-46.WANG Hao,JIN Wei,MA Wenli,WANG Shiping,CHEN Yongwei,BU Jianhua.Root restriction cultivation technique of‘Summer Black’grape in Ningxia region[J]. Sino-Overseas Grapevine&Wine,2020(4):44-46.
[7] 张芮,成自勇,王旺田,吴玉霞,罗永忠,牛黎莉,张有富.水分胁迫对延后栽培葡萄果实生长的影响[J].华南农业大学学报,2015,36(6):47-54.ZHANG Rui,CHENG Ziyong,WANG Wangtian,WU Yuxia,LUO Yongzhong,NIU Lili,ZHANG Youfu. Effect of water stress on grape fruit growth under delayed cultivation[J].Journal of South China Agricultural University,2015,36(6):47-54.
[8] 史晓敏,刘竞择,张艳霞,陈祖民,郭帅奇,王振平.水分胁迫对‘赤霞珠’不同叶龄叶片光合特性的影响[J]. 果树学报,2021,38(1):50-63.SHI Xiaomin,LIU Jingze,ZHANG Yanxia,CHEN Zumin,GUO Shuaiqi,WANG Zhenping.Effects of water stress on photosynthetic characteristics of‘Cabernet Sauvignon’leaves at different leaf ages[J].Journal of Fruit Science,2021,38(1):50-63.
[9] ALLEN J F.Why we need to know the structure of phosphorylated chloroplast light-harvesting complex II[J]. Physiologia Plantarum,2017,161(1):28-44.
[10] LIU Y,FANG H,HUANG M,JIN Y,SUN J,TAO X,ZHANG G,HE K,ZHAO Y,ZHAO H.Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata)II: Transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk[J]. Biotechnology for Biofuels,2015,8(1):1-12.
[11] OLLAT N,CARDE J P,GAUDILLERE J P,BARRIEU F,DIAKOU-VERDIN P,MOING A. Grape berry development:A review[J].Oeno One,2002,36(3):109-131.
[12] 邓浩亮,孔维萍,张恒嘉,李福强.不同生育期调亏灌溉对酿酒葡萄耗水及果实品质的影响[J].中国生态农业学报,2016,24(9):1196-1205.DENG Haoliang,KONG Weiping,,ZHANG Hengjia,LI Fuqiang. Effects of regulated deficit irrigation at different growth stages on water consumption and fruit quality of wine grape[J].Chinese Journal of Eco-Agriculture,2016,24(9):1196-1205.
[13] HIRATSUKA S,ONODERA H,KAWAI Y,KUBO T,ITOH H,WADA R. ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro[J]. Scientia Horticulturae,2001,90(1/2):121-130.
[14] 纪学伟,成自勇,赵霞,张芮.调亏灌溉对荒漠绿洲区滴灌酿酒葡萄产量及品质的影响[J]. 干旱区资源与环境,2015,29(4):184-188.JI Xuewei,CHENG Ziyong,ZHAO Xia,ZHANG Rui. Experimental research on drip irrigation by water controlling for wine grape in arid desert oasis[J]. Agricultural Research in the Arid Areas,2015,29(4):184-188.
[15] 刘静霞.不同生育期水分胁迫对酿酒葡萄产量及品质的影响研究[D].兰州:甘肃农业大学,2016.LIU Jingxia.Effect of water stress in different growth periods on grapeyield and fruit quality[D]. Lanzhou:Gansu Agricultural University,2016.
[16] 丁慧芳,杨文莉,代红军,王振平.淹水对‘美乐’葡萄光合作用及根系生理特性的影响[J].中外葡萄与葡萄酒,2020(2):9-14.DING Huifang,YANG Wenli,DAI Hongjun,WANG Zhenping.Effects of waterlogging on photosynthesis and root physiological characteristics of‘Merlot’grape[J]. Sino-Overseas Grapevine&Wine,2020(2):9-14.
[17] 王生海.整形和水分胁迫对葡萄叶片光合生理过程响应机制的模型模拟研究[D].石河子:石河子大学,2019.WANG Shenghai.An modelling approach to study the effect of training systems and water stress on the mechanism of leaf photosynthetic physiology for grapevine[D]. Shihezi:Shihezi University,2019.
[18] WANVESTRAUT R H,JOSE S,NAIR P K R,BRECKE B J.Competition for water in a pecan (Carya illinoensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in the southern United States[J]. Agroforestry Systems,2004,60(2):167-179.
[19] 李合生,陈华癸.21 世纪农林本科生物系列课程改革的研究与实践(下)[J].中国农业教育,2000(5):16-18.LI Hesheng,CHEN Huagui. Research and practice of biology curriculum reform for agricultural and forestry undergraduates in the 21st century (II)[J]. China Agricultural Education,2000(5):16-18.
[20] 谭伟,唐晓萍,董志刚,李晓梅.5 个鲜食葡萄品种果实酚类物质及抗氧化能力分析[C]//中国园艺学会2015 年学术年会论文集.北京:中国园艺学会,2015:1.TAN Wei,TANG Xiaoping,DONG Zhigang,LI Xiaomei.Analysis of phenolic compounds and antioxidant capacity in fruits of five table grape varieties[C]//Abstracts of the 2015 Annual Conference of Chinese Society for Horticultural Science. Beijing:Chinese Society for Horticultural Science,2015:1.
[21] 张芮,王旺田,吴玉霞,牛黎莉,王俊林,薛燕翎,陈娜娜,王菲.水分胁迫度及时期对设施延迟栽培葡萄耗水和产量的影响[J].农业工程学报,2017,33(1):155-161.ZHANG Rui,WANG Wangtian,WU Yuxia,NIU Lili,WANG Junlin,XUE Yanling,CHEN Nana,WANG Fei.Effects of water stress degree and time on water consumption and yield of grape under facility delay cultivation[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(1):155-161.
[22] 吕丹桂,谢岳,徐伟荣,王振平.水分胁迫对赤霞珠葡萄果实花色苷生物合成的影响[J].西北农业学报,2019,28(8):1274-1281.LÜ Dangui,XIE Yue,XU Weirong,WANG Zhenping. Effect of water stress on anthocyanin biosynthesis of grape berries[J].Acta Agriculturae Boreali-Occidentalis Sinica,2019,28(8):1274-1281.
[23] 张梅花,刘静霞,张芮,成自勇.不同生育期调亏灌溉对酿酒葡萄耗水及产量和品质的影响[J].甘肃农业大学学报,2019,54(4):53-59.ZHANG Meihua,LIU Jingxia,ZHANG Rui,CHENG Ziyong.Effect of deficit irrigation on water consumption,yield and quality of wine grape at different growth stages[J]. Journal of Gansu Agricultural University,2019,54(4):53-59.
[24] 蔺宝军,张芮,董博,温文,高彦婷,王引弟,杨昌钰,王腾飞.不同生育期干旱胁迫对温室葡萄WUE、产量及品质的影响[J].灌溉排水学报,2019,38(12):11-18.LIN Baojun,ZHANG Rui,DONG Bo,WEN Wen,GAO Yanting,WANG Yindi,YANG Changyu,WANG Tengfei.Effects of drought stress on WUE,yield and quality of greenhouse grape at different growth stages[J]. Journal of Irrigation and Drainage,2019,38(12):11-18.
[25] LAWLOR D W.Limitation to photosynthesis in water-stressed leaves:Stomata vs. metabolism and the role of ATP[J]. Annals of Botany,2002,89(7):871-885.
[26] 谢深喜.水分胁迫下柑橘超微结构及生理特性研究[D].长沙:湖南农业大学,2006.XIE Shenxi. Studies on the ultra-structure and physiological characteristic of citrus under water stress[D]. Changsha:Hunan Agricultural University,2006.
[27] HAND J M,YOUNG E,VASCONCELOS A C. Leaf water potential,stomatal resistance,and photosynthetic response to water stress in peach seedlings[J]. Plant Physiology,1982,69(5):1051-1054.
[28] 曹慧,周磊.水分胁迫下非气孔因素对葡萄叶片光合作用的影响[J].潍坊学院学报,2007,7(2):56-60.CAO Hui,ZHOU Lei. Effects of nonstomatal factors on photosynthesis in grape seedling leaves under water stress[J]. Journal of Weifang University,2007,7(2):56-60.
[29] YUAN X K,YANG Z Q,LI Y X,LIU Q,HAN W.Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato[J].Photosynthetica,2016,54(1):28-39.
[30] 胡宏远,王振平.水分胁迫对赤霞珠葡萄光合特性的影响[J].节水灌溉,2016(2):18-22.HU Hongyuan,WANG Zhenping.The effects of water stress on photosynthetic characteristics of Cabernet Sauvignon[J]. Water Saving Irrigation,2016(2):18-22.
[31] 殷常青.高寒地区温室延后栽培葡萄调亏灌溉试验研究[D].西安:西安理工大学,2017.YIN Changqing. Research on regulated deficit irrigation of delayed grape in greenhouse horticulture on cold regions[D]. Xi’an:Xi’an University of Technology,2017.
[32] 于欣廷,崔宁博,麻泽龙.调亏灌溉应用研究进展[J].四川水利,2020,41(1):3-15.YU Xinting,CUI Ningbo,MA Zelong.Research progress of regulated deficit irrigation application[J].Sichuan Water Conservancy,2020,41(1):3-15.
Effects of different water treatments during veraison to ripening period on leaf photosynthetic characteristics and fruit quality traits of Shine Muscat grapes