减量化肥配施海藻复合物对葡萄产量、品质和养分吸收的影响

于会丽1,谢 宁1,徐国益1,邵 微1,2,徐变变1,3,乔宪生1,司 鹏1*

1中国农业科学院郑州果树研究所,郑州 450009;2河南农业大学林学院,郑州 450002;3商丘市农林科学院,河南 商丘 476000)

摘 要:【目的】研究不同化肥用量配施海藻复合物对葡萄产量、品质和养分吸收的影响,为葡萄园合理施肥提供理论依据。【方法】在郑州和新乡2个园区,以阳光玫瑰为供试材料,设置6个处理:F(全量传统水溶肥)、HF(全量传统水溶肥配施海藻复合物)、F1(减量25%传统水溶肥)、HF1(减量25%传统水溶肥配施海藻复合物)、F2(减量50%传统水溶肥)和HF2(减量50%传统水溶肥配施海藻复合物)。【结果】在郑州和新乡2个园区,HF处理较F处理能增加葡萄单果质量和产量,且在减量施肥条件下,HF1处理和HF2处理的单果质量和产量均高于F处理,其中,在郑州园区,HF2处理葡萄产量较F 处理显著增加9.5%;在新乡园区HF1 处理的葡萄单果质量和产量较F 处理分别显著增加26.52%和66.31%。在郑州园区,HF1处理和HF2处理果实内在品质与F处理无显著差异;而在新乡园区,F1处理和HF1处理的可溶性糖含量较F处理分别显著增加了31.46%和30.01%。同时,郑州园区配施海藻复合物处理果实色泽优于F处理,新乡园区HF1处理果实色泽与F处理无显著差异,但HF2处理显著降低了果实色泽参数。在养分含量方面,2个园区HF处理较F处理均能增加果实磷、钾养分含量,且在减量施肥条件下HF1处理果实磷含量显著高于F处理。【结论】在2个园区当前条件下,化肥减量均可增加葡萄产量和果实磷养分含量,其中减量25%传统水溶肥配施海藻复合物的果实可溶性糖、果实磷和钾养分含量均高于其减量50%处理。综合分析,减量25%传统水溶肥配施海藻复合物处理葡萄产量、果实品质和养分吸收综合效果较优。

关键词:葡萄;含海藻复合物;产量;果实品质;养分吸收

葡萄产业因具见效快、收益高、适应性强等突出优点已成为农民增收的新增长点,更是部分贫困地区脱贫攻坚的重要依托产业。根据国家统计局统计,2019 年我国葡萄种植面积达到72.62 万hm2,居世界第二,产量1 419.54万t,居世界首位[1]。然而随着葡萄产业的发展,一些潜在的问题日益凸显,其中过量施用氮磷钾肥最为普遍[2-4]。过量施肥不仅达不到增产的效果,而且会造成土壤板结、养分失调,直接导致果实品质的下降,严重制约了葡萄产业的优质高效发展[5]。因此,在保证葡萄产量稳定的基础上,减少化肥投入,实现化肥减量增效是当前葡萄生产中亟待解决的问题。

肥料增效物质与化肥配施已成为减肥增效的重要手段,如添加氨基酸类、腐殖酸类和海藻酸类物质等[6-7]。其中海藻酸类物质中含有海藻多糖类、氨基酸、蛋白质、维生素、甜菜碱、糖醇和植物生长激素等多种生物活性物质,能够满足多种植物的生长需求[8-9],被广泛应用于农业生产中。海藻酸类物质不仅可以促进果实膨大,提高作物的产量和果实品质[10-12],促进养分吸收[13-14],增强作物抗寒性[15];还能增加有机质含量[11],改善土壤微生物环境[16]。有研究表明,对夏黑葡萄叶面喷施1500 倍液海藻肥,可显著增加其单粒果实的横纵径、糖度和可溶性固形物含量等品质要素指标,同时增产近15%[12]。用稀释1400倍液海藻肥对芥蓝进行水培,可显著促进芥蓝对氮、磷、钾等营养元素的吸收[13]。菜椒在低温胁迫下,施用含海藻酸水溶肥能增加菜椒幼苗的株高度、茎粗度、根长度以及叶绿素含量,增强其抗低温能力[15]。对肥城桃施用80 kg·株-1海藻有机肥,可提高土壤有机质、硝态氮和氨态氮含量[11]。在红富士树体周围沟施11 250 kg·hm-2海藻有机肥,可以增加土壤细菌多样性,降低真菌多样性,进而改善土壤微生物环境[16]。目前,国内外在多种作物上应用海藻肥均表现出良好的效果,而化肥配施海藻复合物在葡萄上的田间应用及其减量效果鲜见报道。

基于此,笔者在本研究中以化肥配施海藻复合物为试验材料,以郑州和新乡2 个葡萄园区为试验点,选用阳光玫瑰为试验品种,以传统水溶性肥料为对照,研究化肥不同用量配施海藻复合物对葡萄产量、果实品质和养分吸收的影响,探讨化肥配施海藻复合物对葡萄减肥增效的潜力,以期为葡萄产业提质增效提供理论依据和技术支撑。

1 材料和方法

1.1 试验地基本情况

郑州试验园区位于郑州市中原区郑大葡萄园(34°50′30′′N,113°30′51′′E),属北温带半干旱大陆性季风气候,四季分明,气候温和,雨热同季。年平均日照时间约为2400 h,年平均气温14.5℃,无霜期220 d,海拔98~150 m,年降雨量586.9 mm。供试土壤为沙壤土,基本性状:有机质含量(w,后同)0.49%,硝态氮含量31.41 mg·kg-1,铵态氮含量4.18 mg·kg-1,有效磷含量44.30 mg·kg-1,速效钾含量93.17 mg·kg-1,交换性钙含量1822.03mg·kg-1,交换性镁含量207.70 mg·kg-1,pH值8.16。

新乡试验园区位于新乡市获嘉县亢村凯富葡萄家庭农场(35°9′28′′N,113°42′17′′E),属暖温带大陆性季风气候,冬冷夏热。年平均日照时间约为2200 h,年平均气温14.4 ℃,海拔75 m,年降雨量563.8 mm。供试土壤为沙壤土,基本性状:有机质含量0.26%,硝态氮含量7.70 mg·kg-1,铵态氮含量4.30 mg·kg-1,有效磷含量32.60 mg·kg-1,速效钾含量113.40 mg·kg-1,交换性钙含量1 070.70 mg·kg-1,交换性镁含量214.60 mg·kg-1,pH值8.90。

1.2 试验材料

供试作物:品种为阳光玫瑰,树龄均为5 a,郑州园区株行距1.5 m×3.5 m,新乡园区株行距1.5 m×3 m,避雨栽培。

供试肥料:传统水溶肥中,所用氮肥为尿素(N含量46.0%,山东泉胜华工科技有限公司)和硝酸钾(N含量13.5%,K2O含量46%,天津市风船化学试剂有限公司),磷肥和钾肥采用磷酸二氢钾(P2O5含量52%,K2O含量34%,四川省什邡市华蓉化工有限公司),其中钾肥不足用硝酸钾补充。含海藻复合物肥料中,海藻复合物(海藻提取物含量60%,海藻酸含量6.5%,由华南农业大学提供)质量占海藻复合物与氮磷钾肥(尿素+磷酸二氢钾+硝酸钾)质量之和的比例为10%,其氮肥、磷肥、钾肥原料跟传统水溶肥保持一致。

1.3 试验设计

2020 年4 月挑选生长正常、树势一致的葡萄作为试验材料。试验设6 个处理:F(全量传统水溶肥)、HF(全量传统水溶肥配施海藻复合物)、F1(减量25%传统水溶肥)、HF1(减量25%传统水溶肥配施海藻复合物)、F2(减量50%传统水溶肥)和HF2(减量50%传统水溶肥配施海藻复合物)。每个处理3次重复,单株小区,随机区组排列。郑州园区和新乡园区全年施肥量一致,具体施肥用量和施肥种类见表1。郑州和新乡园区的所有处理均分别在萌芽前、幼果期、膨大期和采收前20 d 共4 个时期施入,每个时期氮磷钾水溶肥中纯氮磷钾养分(N-P2O5-K2O)施用量占其全年施用量比例分别为40%-15%-15%、30%-40%-15%、20%-30%-40%、10%-15%-30%,采用简易施肥枪施入。其他田间管理措施与当地传统管理保持一致。

表1 施肥方法
Table 1 Fertilization methods

海藻复合物用量Amount of seaweed complex/kg 0 3.97 0 2.98 0 1.97处理Treatment F HF F1 HF1 F2 HF2施肥量N-P2O5-K2O Fertilization amount N-P2O5-K2O/(kg·hm-2)144.00-68.06-147.86 144.00-68.06-147.86 108.00-51.05-110.89 108.00-51.05-110.89 72.00-34.03-73.93 72.00-34.03-73.93

1.4 取样方法

2019 年9 月6 日果实成熟时,随机采集新梢中部叶片,每株树采集20枚功能叶。果实样品采集与叶片采集时间在同一天,按处理从每个树上采集葡萄3穗,测定相关生理指标。

1.5 测定方法

叶片和果实氮、磷、钾含量的测定:采用H2SO4-H2O2 消煮[17],利用全自动间断化学分析仪(Clever Chem 380,德国)测定氮含量,采用钼锑抗比色法测定磷含量,采用原子吸收分光光度法测定钾含量[17]

果实品质的测定:采用蒽酮比色法测定果实可溶性糖含量[18],采用氢氧化钠滴定法测定果实可滴定酸含量[17],使用手持数字折射仪(PR-101,Atago,日本)测定可溶性固形物含量,使用GY-1 型硬度仪测定果实硬度。CR-400 便携式色差仪测定果皮亮度值(L*)、红色饱和度(a*)及黄色饱和度(b*),并根据测得的a*值、b*值计算C 值(色泽饱和度)和h°值(色度角)。C 值计算公式为:C=[(a*2+(b*2]1/2h°值计算公式为:h°=arctan(b*/a*)/6.282 3×360°a*≧0且b*≧0);h°=arctan(b*/a*)/6.282 3×360°+180°a*<0且b*>0)[19-20]

1.6 数据分析

采用Microsoft Excel 2010 进行数据处理与绘图,使用SPSS 17.0软件进行方差分析。

2 结果与分析

2.1 不同处理对葡萄单果质量和产量的影响

由表2 可知,不同处理对葡萄单果质量和产量影响不同。在单果质量方面,2个园区HF处理的单果质量均高于F 处理,但差异不显著。与F 处理相比,2 个园区减量施肥处理(F1、HF1、F2、HF2)均增加了葡萄单果质量,其中,在郑州和新乡园区,F2处理的单果质量均最高,较F 处理分别增加20.93%和36.44%,但与HF2 处理无显著差异。在产量方面,与F 处理相比,2 个园区的HF 处理均增加了葡萄产量,但差异不显著。同时,在2个园区减量施肥条件下,化肥减量处理的产量均显著高于全量处理;在郑州园区,F2 处理产量最高,较F 处理显著提高11.63%,但与HF2处理无显著差异;在新乡园区,除了化肥减量50%处理外(F2、HF2),配施海藻复合物处理产量均高于其等量传统水溶肥处理,其中HF1处理产量较F 处理和HF 处理分别显著增加66.31%和32.57%。由此说明,在2个园区当前条件下,化肥减量不会降低葡萄单果质量和产量,其中在郑州园区,减量50%传统水溶肥提高产量效果较好,但等量施肥条件下,配施海藻复合物处理与传统水溶肥处理间无显著差异。在新乡园区化肥减量25%配施海藻复合物处理增加产量效果优于其他处理。

表2 不同处理对葡萄单果质量和产量的影响
Table 2 Effects of different treatments on single fruit quality and yield of grape

注:不同小写字母表示相同试验园区处理间达5%显著性差异。下同。
Note:Different small letters indicate significant differences among treatments at 5%level under the same experimental orchard.The same below.

处理Treatment F HF F1 HF1 F2 HF2单果质量Single fruit quality/g郑州园区Zhengzhou orchard 9.89±0.60 a 11.40±0.41 a 11.09±0.94 a 10.44±0.91 a 11.96±0.53 a 9.95±0.46 a新乡园区Xinxiang orchard 1 032.00±102.83 b 1 294.67±163.53 ab 1 358.33±68.01 ab 1 716.33±214.04 a 1 603.00±104.71 a 1 442.33±114.86 ab新乡园区Xinxiang orchard 6.75±0.15 b 7.23±0.22 b 8.73±0.16 a 8.54±0.75 a 9.21±0.16 a 8.54±0.34 a产量Yield/(kg·666.7 m-2)郑州园区Zhengzhou orchard 1 990.39±59.31 c 2 029.14±81.41 bc 2 188.66±24.08 ab 2 083.66±22.76 abc 2 221.97±30.92 a 2 179.55±42.08 ab

2.2 不同处理对葡萄果实内在品质的影响

由表3 可知,除新乡园区葡萄果实硬度外,HF处理果实内在品质与F处理间无显著差异。在郑州园区,HF2处理可溶性固形物含量显著高于F、HF和HF1 处理,F2 处理果实可滴定酸含量较F 处理显著增加16.28%;在化肥减量条件下,F1 处理果实内在品质与HF1 处理无显著差异;与F2 处理相比,HF2处理的可溶性固形物含量、可溶性糖含量、固酸比均分别增加7.38%、4.68%和20.4%,可滴定酸含量显著降低10.0%;综合考虑,HF2处理对葡萄内在品质影响最为理想。在新乡园区,除传统水溶肥处理果实硬度外,化肥减量处理果实内在品质均与其F 处理和HF 处理无显著差异;F1 处理和HF1 处理的果实可溶性固形物含量、可溶性糖含量、固酸比均高于其他处理,果实硬度均低于其他处理,但F1 处理和HF1处理间差异不显著;在减量50%条件下,HF2处理硬度较F2处理显著降低32.42%。

表3 不同处理对葡萄果实内在品质的影响
Table 3 Effects of different treatments on fruit internal quality of grapes

试验园区Study orchard郑州Zhengzhou新乡Xinxiang处理Treatment F HF F1 HF1 F2 HF2 F HF F1 HF1 F2 HF2 w(可溶性固形物)Soluble solids content/%17.01±0.97 b 16.98±0.23 b 18.42±0.38 ab 16.91±0.62 b 18.03±0.39 ab 19.36±0.32 b 21.08±1.06 a 21.21±0.99 a 21.72±0.97 a 21.62±0.55 a 20.03±0.13 a 20.14±0.18 a w(可溶性糖)Soluble sugar content/%14.80±0.39 a 14.25±0.45 a 13.94±0.87 a 14.83±0.50 a 13.68±0.41 a 14.32±0.28 a 15.16±0.88 b 16.82±0.66 b 19.93±0.02 a 19.71±0.78 a 16.11±0.74 b 16.27±1.27 b w(可滴定酸)Titratable acid content/%0.43±0.02 b 0.45±0.02 b 0.43±0.01 b 0.46±0.01 ab 0.50±0.01 a 0.45±0.02 b 0.57±0.01 a 0.57±0.01 a 0.55±0.01 a 0.58±0.01 a 0.56±0.01 a 0.56±0.01 a固酸比Solidity-acid ratio 39.41±2.82 ab 37.84±1.78 ab 43.24±1.00 a 35.88±2.39 b 35.83±0.53 b 43.14±1.38 a 36.79±1.96 a 37.05±2.19 a 39.25±1.54 a 37.51±1.26 a 35.81±0.97 a 35.80±1.10 a硬度Firmness/(kg·cm-2)2.85±0.10 a 2.92±0.11 a 2.77±0.67 a 2.97±0.14 a 2.89±0.07 a 2.65±0.15 a 3.26±0.09 a 2.74±0.21 b 2.53±0.15 b 2.46±0.12 b 3.64±0.17 a 2.46±0.12 b

2.3 不同处理对葡萄果实色泽的影响

由表4可知,在郑州园区,等量施肥处理间果实亮度无显著差异,除F2 处理和HF2 处理外,等量配施海藻复合物处理果实亮度均高于等量传统水溶肥处理;与F处理相比,其他处理均能显著提高色泽饱和度;在等量施肥处理间,除全量施肥处理外,其他2组处理色泽饱和度均无显著差异,其中HF处理的色泽饱和度较F 处理显著增加11.23%,HF2 处理的色泽饱和度较F2 处理降低3.72%;各施肥处理间色度角差异不显著。在新乡园区,配施海藻复合物处理果实色泽低于传统水溶肥处理,其中HF1 处理与F1 处理间果实色泽差异不显著,HF 处理和HF2 处理果实亮度和色泽饱和度均显著低于其等量传统水溶肥处理;配施海藻复合物处理中,HF1 处理较HF处理和HF2 处理均显著增加果实亮度和色泽饱和度。由此可知,在郑州园区配施海藻复合物处理葡萄色泽优于全量传统水溶肥处理,在新乡园区HF2处理不利于色泽形成,2 个园区HF1 处理未降低葡萄色泽。

表4 不同处理对葡萄果实色泽的影响
Table 4 Effects of different treatments on fruit color of grapes

试验园区Study orchard郑州Zhengzhou新乡Xinxiang处理Treatment F HF F1 HF1 F2 HF2 F HF F1 HF1 F2 HF2亮度Brightness,L*34.97±0.68 b 35.54±0.80 ab 35.47±0.87 ab 35.69±0.80 ab 36.67±0.45 a 36.55±0.41 a 25.74±0.10 a 23.95±0.27 b 25.59±0.13 a 25.37±0.16 a 24.52±0.22 b 17.15±0.18 c色泽饱和度Chroma,C 10.68±0.31 b 11.88±0.30 a 11.70±0.76 a 11.54±0.21 a 12.35±0.30 a 11.89±0.36 a 28.56±0.12 a 25.13±0.94 b 27.95±0.45 a 27.50±0.04 a 27.46±0.31 a 10.62±0.59 c色度角Hue angle,h°121.11±0.58 a 121.01±0.35 a 121.06±0.17 a 120.96±0.91 a 120.86±0.27 a 121.57±0.70 a 148.63±0.07 a 148.42±0.33 a 148.24±0.14 a 148.77±0.37 a 148.64±0.18 a 146.73±0.33 b

2.4 不同处理对葡萄叶片氮磷钾含量的影响

由表5可以看出,在郑州园区,随着施肥量的减少,叶片氮含量呈先增加后降低趋势,其中F1 处理和HF1 处理的叶片氮含量最高,较相应的F 处理和HF 处理分别增加7.25%和3.22%,且等量施肥处理间叶片氮含量差异不显著;配施海藻复合物处理叶片磷含量和钾含量与传统水溶肥处理间无显著差异,且在化肥减量条件下,HF2 处理叶片钾含量最高,较HF处理增加12.72%。在新乡园区,等量施肥条件下,配施海藻复合物处理叶片氮含量低于传统水溶肥处理,且HF1处理较F1处理的叶片氮含量显著降低10.11%;化肥减量处理叶片磷含量较全量处理差异不显著,其中,HF1 处理的叶片磷含量最高,较F1 处理增加14.37%,F2 处理和HF2 处理叶片磷含量较其全量处理分别下降25.81%和20.88%;化肥减量处理叶片钾含量均高于F处理,其中F1处理叶片钾含量最高,较F处理显著增加23.86%,且等量施肥处理间叶片钾含量差异不显著。由此说明,在当前2个园区条件下,化肥减量处理不会影响叶片氮、磷、钾含量。

表5 不同处理对葡萄叶片氮磷钾含量的影响
Table 5 Effects of different treatments on nutrient contents in the leaves of grape in different orchards

试验园区Study orchard郑州Zhengzhou w(N)/(g·kg-1)w(P)/(g·kg-1)w(K)/(g·kg-1)新乡Xinxiang处理Treatment F HF F1 HF1 F2 HF2 F HF F1 HF1 F2 HF2 18.61±0.36 ab 18.30±1.06 ab 19.96±0.13 a 18.88±0.51 ab 17.74±0.10 b 17.93±0.74 b 19.18±0.47 ab 18.14±0.22 b 19.99±1.14 a 17.97±0.56 b 18.51±0.62 ab 18.03±0.29 b 2.10±0.09 a 1.92±0.13 a 2.05±0.11 a 1.91±0.05 a 1.90±0.03 a 1.91±0.04 a 1.86±0.05 a 1.82±0.05 a 1.60±0.09 a 1.83±0.19 a 1.38±0.30 a 1.44±0.03 a 6.76±0.56 a 7.31±0.42 a 6.87±0.56 a 7.04±0.81 a 6.60±0.05 a 8.24±0.16 a 4.82±0.20 b 5.67±0.40 ab 5.97±0.23 a 5.66±0.36 ab 5.34±0.22 ab 5.26±0.41 ab

2.5 不同处理对果实氮磷钾含量的影响

由表6可知,在郑州园区,等量配施海藻复合物处理的果实氮含量低于等量传统水溶肥处理,其中HF2处理的果实氮含量较F2处理显著下降14.34%,但较HF处理差异不显著;等量施肥处理间,除减量50%处理外,HF 处理和HF1 处理的果实磷、钾含量均显著高于其等量F处理和F1处理。在新乡园区,各施肥处理间果实氮含量差异不显著,其中HF2 处理和F2处理的果实氮含量最低;除HF2处理的果实磷含量低于F2 处理外,HF 处理和HF1 处理的果实磷含量较其F 处理和F1 处理分别显著增加38.23%和49.48%;等量配施海藻复合物处理的果实钾含量高于等量传统水溶肥处理,其中HF2处理较F2处理的果实钾含量增加8.01%。由此说明,等量施肥条件下,2个园区配施海藻复合物均能增加果实磷、钾含量,其中,化肥减量25%配施海藻复合物处理对提高果实氮磷钾含量作用综合效果优于其他处理。

表6 不同处理对果实氮磷钾养分含量的影响
Table 6 Effects of different treatments on nutrient contents in the fruits of grape in different orchards

试验园区Study orchard郑州Zhengzhou新乡Xinxiang处理Treatment F HF F1 HF1 F2 HF2 F HF F1 HF1 F2 HF2 w(N)/(g·kg-1)4.34±0.19 ab 4.29±0.25 ab 4.62±0.11 ab 4.28±0.11 ab 4.74±0.15 a 4.06±0.17 b 4.91±0.34 a 4.78±0.50 a 4.95±0.51 a 4.50±0.27 a 4.21±0.09 a 4.19±0.39 a w(P)/(g·kg-1)1.04±0.05 c 1.21±0.06 b 1.12±0.02 bc 1.39±0.02 a 1.23±0.07 b 1.28±0.04 ab 1.02±0.12 b 1.41±0.05 a 0.97±0.21 b 1.45±0.09 a 1.22±0.04 ab 1.01±0.07 b w(K)/(g·kg-1)12.69±0.60 c 17.44±0.32 a 14.14±0.58 bc 18.76±1.12 a 15.36±0.41 b 15.40±0.24 b 12.01±0.51 a 12.23±0.45 a 11.39±0.35 a 11.43±0.19 a 10.11±0.41 b 10.99±0.15 ab

3 讨 论

3.1 不同处理葡萄单果质量和产量的变化

笔者在本研究中发现,与全量传统水溶肥处理相比,化肥配施海藻复合物处理可增加葡萄单果质量和产量,这与匡石滋等[21]和涂海华等[12]在金斗香番石榴和夏黑葡萄上喷施海藻肥的研究结果一致。这可能是因为海藻复合物中的植物刺激素以及营养物质能促进果实生长,从而达到增产的效果[22]。同时,笔者还发现,在郑州和新乡2 个园区,减量化肥配施海藻复合物处理的葡萄产量均高于全量处理,这与笔者研究组[23]在黄金梨上的研究结果一致,即海藻酸水溶肥在减施25%和减施50%处理条件下梨产量分别较全量海藻酸水溶肥处理增加7.39%和3.18%,推测这跟海藻复合物中的海藻提取物有关。海藻提取物可以改善土壤根际微生物环境,促进植株生长发育和果实膨大,进而提高果实产量[24]

3.2 不同处理葡萄果实品质的差异

糖为果实多种代谢过程提供底物、中间反应物、能量等,是果实品质和风味形成的重要决定因素[25]。本试验条件下,与全量传统水溶肥处理相比,化肥减量25%配施海藻复合物提高了果实可溶性糖含量,推测因为海藻复合物中含有海藻寡糖、活性肽、氨基酸等成分,提高了根系活性和吸收能力,增加了葡萄对有机物的积累,进而增加果实可溶性糖含量[26]。此外,新乡园区配施海藻复合物处理较全量传统水溶肥处理显著降低果实硬度,这与多数研究者[11,21,23]认为海藻复合物可以提高果实硬度的结果不一致,推测与不同果实成熟期成分的合成和转化机制不同以及不同地域的气候条件和土壤养分的差异等因素有关。本试验中,新乡园区配施海藻复合物处理葡萄色泽低于全量传统水溶肥处理,推测因为海藻复合物中的甜菜碱减少了植物体内叶绿素的降解,使得果皮中的叶绿素含量提高,进而干扰和阻碍花色苷的合成[27]。同时笔者在本研究中发现,在新乡园区化肥减量50%处理对果实色泽带来不利影响。这一方面可能与果实钾含量显著降低有关,即钾离子能够催化果实中PAL等花色苷相关酶,影响果实花色苷的含量[28-29]。另一方面可能与新乡园区的土壤水分含量以及果园管理状况有关,即土壤中的水分含量会影响果皮中花青素的含量,进而影响果实色泽[30]。相关现象的具体机制有待进一步研究。

3.3 不同处理葡萄叶片和果实氮磷钾含量的变化

海藻复合物中含有氨基酸、多糖类、甜菜碱以及萜类等天然生长调节物质,作为肥料增效剂具有用量少、增效效果明显的特点,可活化土壤的氮素和磷素,提高养分利用率[6-7]。高岩等[31]研究认为海藻酸复混肥料能提高玉米籽粒对氮、磷、钾养分的吸收。赵鲁[32]在生菜上的研究表明,海藻提取物能显著提高生菜氮、磷、钾含量,并促进其由根部向地上部运移。另外,李志坚等[7]研究报道,海藻酸增效磷肥较普通磷酸一铵提高小麦吸磷量,并提高土壤磷养分有效性。本研究表明,与全量传统水溶肥处理相比,配施海藻复合物处理叶片磷含量差异不显著,但显著提高了果实磷含量,可能是因为海藻复合物能提高土壤Ca2-P 和Al-P 含量,促进土壤中难溶性磷酸盐的溶解,提高土壤的供磷水平,进而促进果实对磷的吸收[7,33-34]。同时笔者还发现,除新乡园区减量处理叶片钾含量外,在等量施肥条件下配施海藻复合物处理较传统水溶肥处理均能提高叶片和果实钾含量,降低叶片和果实氮含量,这可能是由于海藻复合物中的海藻寡糖抑制根系对氨态氮的吸收,降低氮养分利用,进而降低叶片和果实对氮元素的吸收。另外,海藻复合物中的海藻寡糖可以直接被根系吸收利用,促进根系对K+吸收利用,进而提高叶片和果实钾含量[35]。此外,化肥减量25%配施海藻复合物较其全量处理相比,叶片和果实氮、磷、钾含量无显著差异,但化肥减量50%配施海藻复合物降低了果实钾含量,说明化肥大幅度降低对葡萄钾养分吸收有一定影响。

4 结 论

(1)与全量传统水溶肥相比,配施海藻复合物均可增加葡萄单果质量和产量,且减量化肥配施海藻复合物显著增加葡萄产量,表明减量化肥配施海藻复合物在葡萄种植上具有减肥稳产作用。

(2)化肥减量25%配施海藻复合物能够保证果实品质和色泽,但减量50%配施海藻复合物不利于果实色泽形成。

(3)化肥配施海藻复合物能显著增加果实磷养分含量,化肥减量25%条件下,配施海藻复合物显著增加果实磷养分含量,但化肥减量50%不利于果实钾养分吸收。

(4)在本试验条件下,综合考虑果实产量、品质和养分含量等因素,化肥减量25%配施海藻复合物效果最好,可实现化肥减施增效的目的。

参考文献:

[1]国家统计局.中国统计年鉴[M].北京:中国统计出版社,2019.National Bureau of Statistics.China statistical yearbook[M].Beijing:China Statistics Press,2019.

[2]杨治元,陈哲.阳光玫瑰葡萄十五项栽培技术[J].中国南方果树,2018,47(1):161-163.YANG Zhiyuan,CHEN Zhe.Fifteen cultivation techniques of Shine Muscat grape[J].South China Fruits,2018,47(1):161-163.

[3]马振朝,王嘉莹,庞新宇,李蕊,谢枫,孙浩,吉艳芝.河北省葡萄施肥现状及节能减排潜力分析[J].江苏农业科学,2018,46(5):135-139.MA Zhenchao,WANG Jiaying,PANG Xinyu,LI Rui,XIE Feng,SUN Hao,JI Yanzhi.Analysis on the current situation of grape fertilization and the potential of energy saving and emission reduction in Hebei province[J].Jiangsu Agricultural Sciences,2018,46(5):135-139.

[4]李淑玲,何尚仁,杨建国,王小芹.葡萄营养与施肥[J].北方园艺,2000(3):19-20.LI Shuling,HE Shangren,YANG Jianguo,WANG Xiaoqin.Grape nutrition and fertilization[J].Northern Horticulture,2000(3):19-20.

[5]曹毅,钟永红,张赓,张钟莉莉,单飞飞,郑鑫.水肥耦合对设施葡萄产量、品质和水肥利用的影响[J].农机化研究,2021,43(9):186-193.CAO Yi,ZHONG Yonghong,ZHANG Geng,ZHANG Zhonglili,SHAN Feifei,ZHENG Xin.Effects of water and fertilizer coupling on yield,quality and utilization of protected grape[J].Journal of Agricultural Mechanization Research,2021,43(9):186-193.

[6]袁亮,赵秉强,林治安,温延臣,李燕婷.增值尿素对小麦产量、氮肥利用率及肥料氮在土壤剖面中分布的影响[J].植物营养与肥料学报,2014,20(3):620-628.YUAN Liang,ZHAO Bingqiang,LIN Zhian,WEN Yanchen,LI Yanting.Effects of value-added urea on wheat yield and use efficiency and the distribution of residual N in soil profiles[J].Journal of Plant Nutrition&Fertilizer,2014,20(3):620-628.

[7]李志坚,林治安,赵秉强,袁亮,李燕婷,温延臣.增效磷肥对冬小麦产量和磷素利用率的影响[J].植物营养与肥料学报,2013,19(6):1329-1336.LI Zhijian,LIN Zhian,ZHAO Bingqiang,YUAN Liang,LI Yanting,WEN Yanchen.Effects of value-added phosphate fertilizers on yield and phosphorus utilization of winter wheat[J].Journal of Plant Nutrition and Fertilizer,2013,19(6):1329-1336.

[8]BLUNDEN G,MORSE P F,MATHE I,HOHMANN J,CRITCHLEY A T,MORRELL S.Betaine yields from marine algal species utilized in the preparation of seaweed extracts used in agriculture[J].Natural Product Communications,2010,5(4):581-585.

[9]耿银银,尹媛红,沈宏.海藻功能物质的提取工艺、理化性质以及在农业领域中的应用[J].生态学杂志,2017,36(10):2951-2960.GENG Yinyin,YIN Yuanhong,SHEN Hong.Process technologies and chemical-physical properties of seaweed extracts as well as their application in agriculture[J].Chinese Journal of Ecology,2017,36(10):2951-2960.

[10]姜洁,龚一富,郭蓉,俞凯,王何瑜,严小军,陈海敏,郑荣希.海藻生物肥对草莓产量和品质的影响[J].核农学报,2019,33(5):1032-1037.JIANG Jie,GONG Yifu,GUO Rong,YU Kai,WANG Heyu,YAN Xiaojun,CHEN Haimin,ZHENG Rongxi.Effects of seaweed bio-fertilizer on the yield and quality of strawberry[J].Journal of Nuclear Agricultural Sciences,2019,33(5):1032-1037.

[11]张蕊,王钰馨,赵雪惠,李玲,付喜玲,高东升.海藻有机肥不同施用量对土壤肥力及肥城桃品质的影响[J].植物生理学报,2016,52(12):1819-1828.ZHANG Rui,WANG Yuxin,ZHAO Xuehui,LI Ling,FU Xiling,GAO Dongsheng.Effects of different seaweed fertilizer leves on soil fertility and fruit quality of Feicheng peach[J].Plant Physiology Journal,2016,52(12):1819-1828.

[12]涂海华,周坚,毛宇,胡秀霞,康念铅.天然海藻肥对夏黑葡萄植株生长及果实品质的影响[J].中国土壤与肥料,2019(4):213-217.TU Haihua,ZHOU Jian,MAO Yu,HU Xiuxia,KANG Nianqian.Effect of natural seaweed fertilizer on plant growth and fruit quality of Summer black grape[J].Soil and Fertilizer Sciences in China,2019(4):213-217.

[13]何锐,谭星,高美芳,张轶婷,宋世威,苏蔚,刘厚诚.添加不同浓度海藻肥对水培芥蓝生长及品质的影响[J].植物营养与肥料学报,2020,26(11):2051-2059.HE Rui,TAN Xing,GAO Meifang,ZHANG Yiting,SONG Shiwei,SU Wei,LIU Houcheng.Effects of different concentrations of seaweed extract on growth and quality of Chinese kale in hydroponics[J].Journal of Plant Nutrition and Fertilizer,2020,26(11):2051-2059.

[14]刘金萍,刘艳丽,邵雨晴,李银辉,王修康,薛韧,李成亮.海藻复合肥对夏玉米产量及养分吸收利用的影响[J].河南农业大学学报,2021,55(3):429-434.LIU Jinping,LIU Yanli,SHAO Yuqing,LI Yinhui,WANG Xiukang,XUE Ren,LI Chengliang.Effect of seaweed compound fertilizer on yield and nutrient absorption and utilization of summer maize[J].Journal of Henan Agricultural University,2021,55(3):429-434.

[15]宋修超,张杨,高岩,韩西红,秦益民.含海藻酸有机水溶肥料对低温胁迫下菜椒幼苗生长的影响[J].现代园艺,2020(2):4-6.SONG Xiuchao,ZHANG Yang,GAO Yan,HAN Xihong,QIN Yimin.Effect of organic water soluble fertilizer containing alginate on growth of pepper seedlings under low temperature stress[J].Modern Horticulture,2020(2):4-6.

[16]薛晓敏,韩雪平,陈汝,王来平,王金政.生物有机肥对红富士树体生长及土壤微生物群落结构的影响[J].中国土壤与肥料,2020(6):163-173.XUE Xiaomin,HAN Xueping,CHEN Ru,WANG Laiping,WANG Jinzheng.Effects of biological organic fertilizer on growth and soil microbial community struture of red Fuji tree[J].Soil and Fertilizer Sciences in China,2020(6):163-173.

[17]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.LU Rukun.Analytical methods of soil and agricultural chemistry[M].Beijing:China Agricultural Science and Technology Press,2000.

[18]王学奎,章文华,郝再彬,厉秀茹,张玉琼,王双明.植物生理生化实验原理与技术[M].北京:高等教育出版社,2006.WANG Xuekui,ZHANG Wenhua,HAO Zaibin,LI Xiuru,ZHANG Yuqiong,WANG Shuangming.Principles and techniques of plant physiological and biochemical experiments[M].Beijing:Higher Education Press,2006.

[19]程大伟,何莎莎,谷世超,李明,郭西智,顾红,陈锦永.GA3 和TDZ 对红艳无核葡萄果实品质的影响[J].果树学报,2021,38(2):212-221.CHENG Dawei,HE Shasha,GU Shichao,LI Ming,GUO Xizhi,GU Hong,CHEN Jinyong.Influence of GA3 and TDZ on fruit quality of Hongyan Wuhe grape[J].Journal of Fruit Science,2021,38(2):212-221.

[20]SDIRI S,NAVARRO P,MONTERRDE A,BENABDA J,SALVADOR A.New degreening treatments to improve the quality of Citrus fruit combining different periods with and without ethylene exposure[J].Postharvest Biology and Technology,2012,63(1):25-32.

[21]匡石滋,邵雪花,赖多,肖维强,刘传和,贺涵,曾晶,胡峰.叶面喷施海藻磷钾肥对金斗香番石榴产量和品质的影响[J].广东农业科学,2019,46(10):42-47.KUANG Shizi,SHAO Xuehua,LAI Duo,XIAO Weiqiang,LIU Chuanhe,HE Han,ZENG Jing,HU Feng.Effects of foliar spraying with alginate phosphorus fertilizer on the yield and quality of Psidium guajava cv.Jindouxiang[J].Guangdong Agricultural Sciences,2019,46(10):42-47.

[22]SHARMA H S S,FLEMING C,SELBY C,RAO J R,MARTIN T.Plant biostimulants:A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses[J].Journal of Applied Phycology,2014,26(1):465-490.

[23]于会丽,司鹏,邵微,徐国益,乔宪生,王玉红,杨晓静.海藻酸水溶肥对梨树生长与果实产量及品质的影响[J].果树学报,2019,36(5):603-611.YU Huili,SI Peng,SHAO Wei,XU Guoyi,QIAO Xiansheng,WANG Yuhong,YANG Xiaojing.Effect of water soluble alginic acid fertilizer on the growth,yield and quality of pear[J].Journal of Fruit Science,2019,36(5):603-611.

[24]ALAM M Z,BRAUN G,NORRIE J,HODGES D M.Effect of Ascophyllum extract application on plant growth,fruit yield and soil microbial communities of strawberry[J].Canadian Journal of Plant Science,2013,93(1):23-36.

[25]廖光联,钟敏,黄春辉,贾东峰,徐小彪.果实糖代谢及其相关酶基因研究进展[J].江西农业大学学报,2020,42(1):187-195.LIAO Guanglian,ZHONG Min,HUANG Chunhui,JIA Dongfeng,XU Xiaobiao.Progress in research on sugar metabolism and related enzyme genes in fruit[J].Acta Agriculturae Universitatis Jiangxiensis,2020,42(1):187-195.

[26]ROLLAND F,BAENA-GONZALEZ E,SHEEN J.Sugar sensing and signaling in plants:Conserved and novel mechanisms[J].Annual Review of Plant Biology,2006,57:675-709.

[27]BLUNDEN G,JENKINS T,LIU Y W.Enhanced leaf chlorophyll levels in plants treated with seaweed extract[J].Journal of Applied Phycology,1996,8(6):535-543.

[28]BUSH D S.Calcium regulation in plant cells and its role in signaling[J].Annual Review of Plant Biology,1995,46(1):95-122.

[29]TESTER M,BLATT M R.Direct measurement of K+ channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers[J].Plant Physiology,1989,91(1):249-252.

[30]牛帅科,赵艳卓,魏建国,陈展,宣立锋,王广海,牛早柱,褚凤杰,杨丽丽.葡萄转色初期干旱胁迫促进果实着色的研究[J].节水灌溉,2020(5):73-76.NIU Shuaike,ZHAO Yanzhuo,WEI Jianguo,CHEN Zhan,XUAN Lifeng,WANG Guanghai,NIU Zaozhu,CHU Fengjie,YANG Lili.A study on drought-stress promoting grape coloring during initial veraison[J].Water Saving Irrigation,2020(5):73-76.

[31]高岩,韩西红,王海朋,秦益民,宋修超,张杨.海藻酸复混肥料对玉米产量及品质的影响[J].南方农业,2020,14(2):147-149.GAO Yan,HAN Xihong,WANG Haipeng,QIN Yimin,SONG Xiuchao,ZHANG Yang.Effect of alginate compound fertilizer on yield and quality of maize[J].South China Agriculture,2020,14(2):147-149.

[32]赵鲁.海藻提取物与Mn、Zn 配施对生菜营养特性的影响[D].北京:中国农业科学院,2008.ZHAO Lu.Effects of application of seaweed extract combined withmanganese,zinconnutritivepeculiarityoflettuce(Lactucasativa)[D].Beijing:ChineseAcademyofAgriculturalSciences,2008.

[33]郭娅,于洪波,尹焕丽,王丹丹,李岚涛,王宜伦.海藻酸磷酸二铵对夏玉米产量及养分吸收利用的影响[J].江西农业学报,2020,32(6):30-33.GUO Ya,YU Hongbo,YIN Huanli,WANG Dandan,LI Lantao,WANG Yilun.Effects of alginate diammonium phosphate on yield and nutrient absorption and utilization of summer maize[J].Acta Agriculturae Jiangxi,2020,32(6):30-33.

[34]周红梅,黄成星,段成鼎,杨淑娟.海藻提取物对石灰性土壤无机磷组分及速效磷的影响[J].山东农业科学,2008,40(6):73-76.ZHOU Hongmei,HUANG Chengxing,DUAN Chengding,YANG Shujuan.Effects of seaweed extract on inorganic phosphorus fractions and available phosphorus content in calcareous soil[J].Shandong Agricultural Science,2008,40(6):73-76.

[35]尹皓婵.海藻提取物对三种经济作物的生长和抗逆性的影响[D].舟山:浙江海洋大学,2019.YIN Haochan.Effects of seaweed extract on the growth and stress resistance of three economic crops[D].Zhoushan:Zhejiang Ocean University,2019.

Effects of chemical fertilizer reduction combined with seaweed complex application on yield,fruit quality and nutrient absorption of grape

YU Huili1,XIE Ning1,XU Guoyi1,SHAO Wei1,2,XU Bianbian1,3,QIAO Xiansheng1,SI Peng1*
(1Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China;2College of Forestry,Henan Agricultural University,Zhengzhou 450002,Henan,China;3Shangqiu Academy of Agricultural and Forestry Sciences,Shangqiu 476000,Henan,China)

Abstract:【Objective】The study aimed to investigate the effects of chemical fertilizer reduction combined with seaweed complex application on yield, quality and nutrient absorption in grape to provide a theoretical basis for rational fertilization in vineyards.【Methods】Field experiments were conducted in the vineyards in Zhengzhou and Xinxiang.Shine Muscat Grape was used as experimental material,and six treatments were as follows:F(full dose of traditional water soluble fertilizer),HF(full dose of traditional water soluble fertilizer combined with seaweed complex), F1 (25% reduction in traditional water soluble fertilizer), HF1 (25% reduction of traditional water soluble fertilizer combined with seaweed complex with),F2(50%reduction of traditional water soluble fertilizer),HF2(50%reduction of traditional water soluble fertilizer combined with seaweed complex with ).Three repeats were set for eachtreatment, with a single plot and random block arrangement.Grape plant spacing was 1.5 m×3.5 m and 1.5 m×3.0 m respectively in Zhengzhou and Xinxiang vineyards.The nitrogen fertilizers were urea and potassium nitrate,and potassium dihydrogen phosphate was used for phosphorus fertilizer and potassium fertilizer,in which the deficiency of potassium fertilizer was supplemented by kalium nitrate fertilizer.In all treatments,the fertilizers were applied in the bud break stage,young fruit stage,expansion stage,and 20 days before harvest,respectively.In each stage,the proportion of pure N,P2O5,K2O in total fertilizer application was 40%-15%-15%, 30%-40%-15%, 20%-30%-40%, 10%-15%-30%, respectively,which were applied by simple fertilization gun.Other field management measures were consistent with the local traditional management.【Results】The single fruit weight and yield of grapes in Zhengzhou and Xinxiang vineyards were improved by the HF treatments compared with the F treatment.Under the condition of reduced fertilization,the single fruit quality and yield of the HF1 and HF2 treatments were higher those of the F treatment.There was no significant difference in single fruit quality between the HF1 and HF2 treatments in Zhengzhou vineyard,while the yield of the HF2 treatment significantly increased by 9.50%;in Xinxiang vineyard,the single fruit quality and yield of the HF1 treatment were significantly increased by 26.52%and 66.31%,respectively,compared with the F treatment.There was no significant difference in fruit quality between the treatment of traditional water-soluble fertilizer treatment combined with seaweed complex and the treatment of traditional water-soluble fertilizer treatment in Xinxiang vineyard.Under the condition of 25%reduction combined with the seaweed complex,the soluble solid substance was significantly increased by 31.46%,and fruit hardness was significantly increased by 22.39%in Xinxiang vineyard,compared with the full dose of traditional water-soluble fertilizer treatment.However,there was no significant difference in fruit quality in Zhengzhou vineyard.The F treatment had the highest leaf nitrogen content in Zhengzhou and Xinxiang vineyards,which were increased by 7.25%and 4.22%respectively compared with the HF treatment.Under the condition of equal fertilization treatment,except for the 50%fertilization reduction in Zhengzhou vineyard,the leaf nitrogen contents of the treatment of traditional water-soluble fertilizer combined with seaweed complex application were lower than that of the treatment of traditional water-soluble fertilizer treatment in two vineyards.In Zhengzhou and Xinxiang vineyards, there was no significant differences in phosphorus contents of leaves between the treatment of traditional water-soluble fertilizer combined with seaweed complex application and the treatment of traditional water-soluble fertilizer.Compared with F treatment,HF increased the potassium contents of leaves,and under the conditions of fertilizer reduction,the potassium contents of leaves treated with the treatments of water soluble fertilizer combined with seaweed complex application were still higher than that of the treatment of traditional water soluble fertilizer treatment in Zhengzhou vineyard,and there was no significant difference in potassium contents of leaves between the treatment of traditional water-soluble fertilizer and the treatment of same amount of traditional water-soluble fertilizer combined with seaweed complex application in Xinxiang vineyard.In the same amount of fertilization, the fruit nitrogen contents under the treatment of water-soluble fertilizer combined with seaweed complex application were lower than that of the treatment of traditional water-soluble fertilizer,in which the 50%reduction of chemical fertilizer combined with seaweed complex application treatment had the lowest nitrogen content of the fruit.Moreover,HF treatment could promote the phosphorus and potassium content of the fruit,and under the conditions of chemical fertilizer reduction,the phosphorus content of the fruits of HF1 treatment was still higher than those of the other fertilization treatments, however, compared with HF treatment,HF2 treatment significantly decreased the potassium content of the fruits in two vinyards.In terms of fruit coloration,compared with F treatment,the color saturation of HF treatment was significantly increased by 11.23%in Zhengzhou vineyard,but decreased by 12.01%in Xinxiang vineyard.Un-der the condition of fertilizer reduction,the color saturation of the HF1 treatment and HF2 treatment in Zhengzhou vineyard were significantly improved compared with the F treatment, while the HF2 treatment in Xinxiang vineyard significantly decreased the brightness and color saturation of the fruits.【Conclusion】Under the current conditions of two vineyards,fertilizer reduction could increase the yield of grapes and the phosphorus contents of the fruits.Under the conditions of fertilizer reduction,the soluble sugar contents, phosphorus, and potassium contents of the fruit of HF1 treatment were higher than that of the HF2 treatment.Comprehensive analysis showed that HF1 treatment had a better effect on grape yield,fruit quality,and nutrient absorption.

Key words:Grape;Seaweed complex;Yield;Fruit quality;Nutrient absorption

中图分类号:S663.1

文献标志码:A

文章编号:1009-9980(2022)04-0584-09

DOI:10.13925/j.cnki.gsxb.20210434

收稿日期:2021-09-10

接受日期:2021-12-10

基金项目:兵团重大科技项目(2019AA004);河南省重点研发计划(202102110195);“十三五”国家重点研发计划(2016YFD0200405)

作者简介:于会丽,女,助理研究员,硕士,主要从事果树新型肥料研制与施肥技术研究。Tel:0371-55900985,E-mail:yuhuili@caas.cn

*通信作者Author for correspondence.Tel:0371-55900886,E-mail:sipeng@caas.cn