我国是苹果生产大国,种植面积和总产量均居世界前列。然而,提高果园单产、提升果实品质仍然是我国果业发展亟需解决的问题。施肥是影响果园单产和果实品质的主要措施之一。目前果园的主要施肥方式为沟施和撒施,存在肥效释放慢、肥料利用率低等问题[1]。滴灌技术起源很早,最初是为了节约用水,水肥一体化技术在此基础上发展而来,水肥一体化又称为滴灌施肥,是一项农业水肥综合管理新技术,能够有效实现水肥同步供应和高效利用。科研人员发现将肥料放于灌溉水中,通过滴灌系统将肥料送到植物根部,植物生长状态更好。目前已广泛用于棉花、玉米、苹果、柑橘等作物和果树的种植[2]。滴灌施肥可有效调控灌水量和施肥量、确保施肥更加均匀,提高作物的水肥利用效率,使作物的产量和品质都得到可靠保证,具有节水节肥、增产增效的优点。农业发达国家采用滴灌施肥的果园比例为75%~80%[3-8]。目前,我国水肥一体化技术广泛用于玉米、西红柿、香蕉等瓜果蔬菜的生产,但在苹果产业的应用上还落后于其他国家[7,9-12]。
目前果园水肥一体化还存在一系列的问题。如,目前水溶肥市场价格较高,完全实行水肥一体化普通农户无法承受;氮肥中农用尿素、碳铵、硝铵等肥源水溶性较好,可以直接作为水溶肥,且利用水肥一体化设施进行少量多次施用是提高氮肥利用率的主要途径之一,而常见磷钾肥中农用硫酸钾、磷酸二铵,尤其是常规复合肥水溶性差,不能作为滴灌施肥肥源;完善的水肥一体化设施投资成本高,且需要拥有一定技术的专业人员进行操作和维护,普通果农不具备操作专业水肥一体化设备的能力。
王力等[7]在西瓜上的研究表明对西瓜进行灌水施肥,达到了节水、节肥、高产和减少化肥对土壤污染的目的。杨凡等[13]在酿酒葡萄上的研究表明滴灌条件下产量更高。赵佐平等[14]在苹果上的研究表明水肥施用技术能够显著提高苹果产量和品质。刘星等[15]在苹果上的研究表明滴灌模式下更利于果树的生长和产量的提高。前人的研究主要集中在相对于传统施肥,滴灌施肥在提高树体生长及果实品质方面的优势,树体在不同肥料滴灌、撒施组合条件下,对肥料吸收利用效率的研究几乎没有。笔者在本研究中以富士苹果为对象,研究不同滴灌组合下树体对15N的吸收分配以及氮肥利用率的影响,旨在获得适宜的肥料滴灌方式,为果树科学的滴灌施肥提供理论依据。
盆栽试验于2019 年在辽宁兴城中国农业科学院果树研究所温泉实验基地进行。试材为2年生烟富3/T337/山丁子幼苗,每株3~4 个分枝,基部粗度2 cm,所需水肥一体化方式采用滴灌袋模拟。试验共设5 个处理,T1:N 撒施,PK 滴灌;T2:N 撒施,PK撒施(PK 为水溶肥);T3:N 滴灌,PK 滴灌;T4:N 滴灌,PK撒施(PK为水溶肥);T5:N滴灌,PK撒施(PK为普通肥料)。每个处理3次重复。
所有肥料在2019 年5 月、6 月、7 月施入。每月施入肥料的量各占肥料总量的三分之一。试验中用于撒施的肥料分别于月初(每月5日前)一次性撒入盆后与土混匀;用于滴灌处理的肥料,将每月肥料的总量分成等量3 次施用,每次间隔7~10 d。所有处理用于撒施的肥料分3 次施用完毕,用于滴灌处理的肥料分9 次施用完毕。肥料总养分施入量按照每kg 土0.5 g 氮(N)计算,加仑盆中干土质量约为20 kg,即每盆施入N的总量为10 g。五氧化二磷和氧化钾均按照每盆5 g 施用。具体肥料用量根据肥料实际养分含量计算。每月具体施用量见表1(仅列出5月份施用量,6、7月份相同)。2019年10月份用纱网将全株罩住,用于落叶收集。
表1 2019 年5 月份肥料用量
Table 1 Fertilizer dosage for May 2019g
处理Treatment T1 T2 T3 T4 T5尿素(农用)Urea(Agricultural)5.58 5.58 5.58 5.58 4.16 15N尿素Urea(15N)2.00 2.00 2.00 2.00 2.00磷酸二氢钾(试剂)KH2PO4(Reagents)3.21 3.21 3.21 3.21硫酸钾(试剂)K2SO4(Reagents)1.05 1.05 1.05 1.05磷酸二铵(农用)(NH4)2HPO4(Agricultural)硫酸钾(农用)K2SO4(Agricultural)3.62 3.27
当年冬季,树体进入休眠期后,将树体解析为叶片、一年生枝、多年生枝、主干、中间砧、主根、侧根、毛细根共8个部位。样品按清水→洗涤剂→清水→1%盐酸→3次去离子水顺序冲洗后,85 ℃杀青30 min,随后65 ℃烘干至恒质量,电磨粉碎后混匀装袋备用。
样品消煮全氮用凯氏定氮法测定。15N 丰度用ZHT-03质谱计测定。
各组织氮总量/g=各组织氮含量(%)×各组织干质量(g);
Ndff/%=(植物样品中15N 丰度%-15N 自然丰度%)/(肥料中的15N丰度%-15N自然丰度%)×100;
各组织15N 吸收量/mg=各组织全氮含量(mg)×Ndff(%);
氮肥分配率/%=各组织从氮肥中吸收的氮量(mg)/总吸收氮量(mg)×100;
氮肥利用率/%=各组织15N吸收量(从氮肥中吸收的N)(mg)/同位素N施用量×100。
数据用Excel 整理计算后,利用SAS 9.4 进行方差分析,利用LSD法进行多重比较。
由表2可以看出,不同处理间整株干质量、氮总量之间没有表现出显著性差异,但是氮肥撒施的处理(T1、T2)植株氮总量略低于氮肥滴灌的处理(T3、T4),表明氮肥滴灌处理促进了树体对氮的吸收。氮肥滴灌条件下磷钾肥不同施用方式间无显著差异,且当磷钾肥施用普通肥料(T5)与施用水溶性磷钾肥(T3、T4)间也无显著差异。
表2 不同滴灌方式对植株氮含量和氮总量的影响
Table 2 Effect of different drip irrigation methods on nitrogen content and total nitrogen
注:同列不同小写字母表示相同组织不同处理之间有显著性差异(p<0.05)。“—”表示此处数据未测定。下同。
Note: Different lowercase letters in the same column indicate significant differences among different treatments of the same tissue (p <0.05).“—”indicates that the data here are not measured.The same below.
氮总量Total nitrogen/g 1.09±0.33 a 1.32±0.31 a 1.44±0.46 a 1.26±0.32 a 1.08±0.23 a 0.93±0.53 a 0.98±0.12 a 1.50±0.27 a 1.29±0.54 a 1.07±0.47 a 1.34±0.24 a 1.50±0.28 a 1.67±0.29 a 1.64±0.25 a 1.75±0.07 a 0.43±0.07 b 0.30±0.04 b 0.49±0.08 b 0.44±0.06 b 0.98±0.08 a 0.46±0.02 a 0.54±0.27 a 0.62±0.01 a 0.59±0.06 a 0.78±0.20 a 0.98±0.06 a 0.55±0.02 ab 0.43±0.26 b 0.52±0.31 ab 0.93±0.01 a 0.44±0.11 a 0.47±0.11 a 0.56±0.13 a 0.75±0.21 a 0.53±0.06 a 0.91±0.33 a 0.74±0.12 a 0.63±0.26 a 1.14±0.61 a 0.71±0.04 a 6.58±0.83 a 6.40±0.66 a 7.34±0.81 a 7.62±0.17 a 7.82±0.34 a部位Plant tissue叶子Leaf一年生枝Annual branches多年生枝Perennial branches主干Trunk中间砧Intermediate anvil主根Main root侧根Lateral root毛细根Capillary root氮含量Nitrogen content/%1.15±0.29 a 1.33±0.04 a 1.32±0.06 a 1.25±0.31 a 1.07±0.23 a 1.29±0.11 ab 1.18±0.09 ab 1.56±0.21 a 1.42±0.24 ab 0.99±0.43 b 0.75±0.11 a 0.76±0.11 a 0.80±0.11 a 0.74±0.09 a 0.89±0.04 a 0.53±0.04 a 0.44±0.20 a 0.53±0.09 a 0.41±0.06 a 0.62±0.05 a 0.49±0.07 a 0.43±0.14 a 0.52±0.14 a 0.41±0.06 a 0.52±0.13 a 0.88±0.03 a 0.63±0.17 ab 0.63±0.20 ab 0.62±0.02 b 0.75±0.01 ab 1.32±0.18 a 1.14±0.32 a 1.36±0.17 a 1.14±0.16 a 1.47±0.17 a 1.42±0.00 a 1.25±0.13 a 1.61±0.35 a 1.48±0.25 a 1.51±0.08 a整株Whole plant处理Treatment T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5干质量Dry weight/g 94.70±4.86 a 99.44±20.45 a 108.61±29.69 a 101.08±0.47 a 91.49±12.72 a 73.91±47.40 a 83.07±16.13 a 97.92±30.13 a 88.83±22.40 a 107.63±0.28 a 178.51±5.36 a 202.81±64.85 a 213.79±66.13 a 220.34±6.72 a 173.71±30.64 a 81.08±6.01 b 73.38±24.71 b 91.09±0.37 b 107.93±1.26 b 149.69±11.18 a 94.04±7.87 b 123.44±22.86 ab 123.32±33.14 ab 145.31±6.04 a 130.89±27.41 a 112.00±10.38 a 90.87±28.07 a 64.87±20.09 a 82.55±47.98 a 95.48±41.53 a 33.13±3.57 a 43.89±22.29 a 40.79±4.38 a 67.86±27.47 a 45.42±13.20 a 64.03±23.43 a 60.03±16.34 a 38.28±7.57 a 74.55±28.65 a 54.67±10.90 a 731.40±70.27 a 776.91±169.98 a 778.66±166.86 a 888.45±38.87 a 848.98±99.66 a——
植株各组织干质量、氮含量和氮总量不同处理间表现出一定的差异性。植株主干的干质量在T3、T4处理高于T1、T2处理,且4个处理间无显著差异,T5 处理显著高于其他处理。中间砧的干质量在T4处理最高,与T1处理有显著差异,T5处理与T4处理无显著差异。其余部位的干质量在不同处理下无显著差异。多数部位的干质量在T3、T4处理高于T1、T2 处理。一年生枝的氮含量在T3 处理最高,与T5处理有显著差异。主根的氮含量在T1 处理最高与T4 处理有显著差异。其余各部位的氮含量在不同处理下无显著差异。
叶片的总氮量在T3处理下最高,与其他处理无显著差异。一年生枝的总氮量在T3、T4处理下高于T1、T2 处理,各处理间无显著差异。多年生枝的总氮量在T3、T4处理下要高于T1、T2处理,而在T5处理下最高。主干的总氮量在T5 处理下最高且与其他处理有显著差异。中间砧的总氮量在T5 处理下最高。主根的总氮量在T1 处理最高,T3处理最低,T1、T5处理的总氮量均显著高于T3处理。侧根、毛细根的总氮量在不同处理下无显著差异。植株各组织的总氮含量总体趋势多数为T3、T4、T5处理高于T1、T2处理,即氮肥滴灌处理的干质量、氮含量和总量总体高于氮肥撒施处理,而磷钾肥不同施用方式影响较小。
由表3 可以看出,不同处理间植株整体的Ndff值和15N吸收量有一定差异,氮肥滴灌处理(T3、T4、T5)的Ndff 值和15N 吸收量均高于氮肥撒施处理(T1、T2),且T3 处理最高,与T1、T2 处理有显著差异。在氮肥滴灌条件下磷钾肥不同施用方式下植株整体的Ndff值和15N吸收量并无显著差异。
表3 不同滴灌方式对植株Ndff 值和15N 吸收量的影响
Table 3 Effect of different drip irrigation methods on Ndff values and15N uptake
注:同列不同小写字母表示相同组织不同处理之间有显著性差异(p <0.05);同列不同大写字母表示相同处理不同组织间有显著性差异(p <0.05)。下同。
Note: Different lowercase letters in the same column indicate significant differences among different treatments of the same tissue (p <0.05); Different capital letters in the same column indicate significant differences among different tissues of the same treatment (p <0.05).The same below.
15N吸收量15N absorption/mg 72.93±32.81 Aa 93.69±19.87 Aa 134.66±54.36 Aa 96.51±20.36 ABa 81.42±20.23 ABa 72.78±36.24 Aa 75.06±1.10 ABa 155.93±19.87 Aa 122.89±65.85 Aa 86.54±56.94 ABa 80.67±22.51 Ab 93.32±8.90 Aab 135.31±13.29 Aa 125.48±13.75 Aa 122.78±1.94 Aab 23.95±1.06 Abc 15.37±7.12 Dc 38.11±9.54 Bb 26.72±9.58 Bbc 64.77±7.13 Ba 27.00±3.50 Aa 28.90±17.59 CDa 51.23±3.10 Ba 40.05±10.05 ABa 51.02±16.19 Ba 62.39±12.88 Abc 33.16±4.17 CDc 36.86±21.15 Bb 40.75±19.06 ABbc 65.87±13.28 Ba 29.98±13.86 Ab 31.80±3.35 CDb 55.64±14.55 Bab 67.83±7.05 ABa 46.00±0.80 Bab 63.66±23.44 Aa 52.46±5.06 BCa 61.02±22.66 Ba 108.49±63.95 ABa 58.16±0.26 Ba 433.35±40.81 b 423.76±9.42 b 668.77±58.81 a 628.72±89.21 a 576.57±70.82 ab部位Plant tissue叶子Leaf一年生枝Annual branches多年生枝Perennial branches主干Trunk中间砧Intermediate anvil主根Main root侧根Lateral root毛细根Capillary root整株Whole plant处理Treatment T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 Ndff/%6.51±1.05 ABb 7.11±0.16 ABb 9.21±0.84 ABCa 7.70±0.32 BCab 7.53±0.30 ABb 8.04±0.72 Aa 7.73±0.84 Aa 10.47±0.53 Aa 9.28±1.26 Aa 7.69±1.97 ABa 5.98±0.60 Bb 6.27±0.56 BCb 8.13±0.61 CDa 7.67±0.34 BCa 7.03±0.19 ABab 5.63±0.62 Ba 5.04±1.72 Da 7.80±0.64 Da 6.01±1.39 Da 6.63±0.19 Ba 5.87±0.45 Bb 5.15±0.65 CDb 8.25±0.58 CDa 6.76±1.05 CDab 6.47±0.41 Bb 6.32±0.94 ABa 6.05±1.02 BCDa 8.66±0.27 BCDa 8.33±1.39 ABa 7.09±1.49 ABa 6.63±1.57 ABb 6.93±0.98 ABab 9.92±0.29 ABa 9.27±1.60 Aab 8.73±0.88 Aab 6.98±0.02 ABc 7.16±0.51 ABc 9.79±0.39 ABa 9.36±0.60 Aab 8.20±0.47 ABbc 51.96±3.83 b 51.45±6.45 b 72.22±1.68 a 64.39±7.94 ab 59.36±5.30 ab
植株各组织Ndff值和15N吸收量不同处理间表现出一定的差异性。叶片和中间砧的Ndff值在T3、T4 处理下高于T1、T2 处理,其中T3 处理与T1、T2处理有显著差异,T5 处理与T4 处理无显著差异。多年生枝的Ndff 值在T3、T4 处理下显著高于T1、T2 处理,T5 处理与T3、T4 处理无显著差异。侧根的Ndff值在T3、T4处理下高于T1、T2处理,其中T3处理与T1 处理有显著差异,T5 处理与T3、T4 处理无显著差异。毛细根的Ndff 值在T3、T4 处理显著高于T1、T2 处理,T5 处理与T4 处理无显著差异。其余各组织的Ndff值在不同处理下无显著差异,且T3、T4处理高于T1、T2处理,T3、T4处理与T5处理差异较小。同时,一年生枝的15N 吸收量在T3、T4处理高于T1、T2处理,T5处理与T3、T4处理无显著差异。多年生枝的15N 吸收量在T3、T4 处理高于T1、T2 处理,且T3、T4处理显著高于T1处理,T5处理低于T3、T4处理但无显著差异。主干的15N吸收量在T5 处理最高且显著高于其他处理。中间砧的15N吸收量在T3、T4、T5处理高于T1、T2处理,且T3、T4、T5 处理之间差异较小。主根的15N 吸收量在T5 处理最高且与其他处理有显著差异。侧根的15N吸收量在T3、T4处理高与T1、T2处理且T4处理与T1、T2处理有显著差异,T5处理略低于T3、T4处理且无显著差异。植株各组织的Ndff值和15N吸收量总体趋势多数为T3、T4、T5处理高于T1、T2处理,且T1 与T2 处理,T3、T4 与T5 处理间差异较小。即氮肥滴灌处理的Ndff值和15N吸收量总体高于撒施处理,在氮肥施用方式不变时,磷钾肥不同施用方式下Ndff值和15N吸收量差异较小。表明氮肥滴灌处理促进了树体对氮肥的吸收、征调,磷钾肥的不同施用方式影响较小。
由表4 可以看出,不同处理间植株整体的氮肥利用率有显著差异,T3处理的氮肥利用率最高达到了28.83%,高出T1 和T2 处理10.13%和10.56%。T3、T4、T5处理间无显著差异。表明氮肥滴灌处理能够提高氮肥利用率,而磷钾肥不同施用方式无显著影响。
表4 不同滴灌方式对植株氮肥分配率和氮肥利用率的影响
Table 4 Effect of different drip irrigation methods on plant N fertilizer distribution rate and N fertilizer utilization
部位Plant tissue叶子Leaf 1年生枝Annual branches多年生枝Perennial branches主干Trunk中间砧Intermediate anvil主根Main root侧根Lateral root毛细根Capillary root氮肥分配率Nitrogen fertilizer distribution rate/%16.55±6.01 ABa 22.06±4.20 ABa 19.86±6.38 Aa 15.74±5.47 Aa 14.45±5.28 ABCa 16.47±6.81 ABa 17.72±0.13 ABa 23.28±0.92 ABa 18.99±7.78 Aa 14.51±8.09 ABa 18.94±6.98 Aa 22.00±1.61 Aa 20.22±0.21 Aa 20.32±5.07 Aa 21.48±2.97 Aa 5.54±0.28 Bb 3.65±1.76 Bb 5.78±1.94 Db 4.18±0.93 Bb 11.24±0.14 Ca 6.30±1.40 ABa 6.87±4.30 ABa 7.71±1.14 CDa 6.32±0.70 Ba 8.74±1.73 BCa 14.60±4.35 ABa 7.84±1.16 ABa 5.39±2.69 CDa 6.76±3.99 Ba 11.37±0.91 ABCa 7.10±3.87 ABa 7.50±0.62 ABa 8.45±2.92 CDa 10.98±2.68 Ba 8.05±1.13 ABCa 14.50±4.04 ABa 12.37±0.92 ABa 9.31±4.21 BCa 16.70±7.80 Ba 10.16±1.20 ABCa整株Whole plant处理Treatment T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5——氮肥利用率Fertilizer utilization rate/%3.14±1.41 a 4.04±0.86 a 5.80±2.34 a 4.16±0.88 a 3.51±0.87 a 3.14±1.56 a 3.24±0.05 a 6.72±0.86 a 5.30±2.84 a 3.73±2.45 a 3.48±0.97 b 4.02±0.38 ab 5.83±0.57 a 5.41±0.59 a 5.29±0.08 ab 1.03±0.05 bc 0.66±0.31 c 1.64±0.41 b 1.15±0.41 bc 2.79±0.31 a 1.16±0.15 a 1.25±0.76 a 2.21±0.13 a 1.73±0.43 a 2.20±0.70 a 2.69±0.56 a 1.43±0.18 a 1.59±0.91 a 1.76±0.82 a 2.84±0.57 a 1.29±0.60 b 1.37±0.14 b 2.40±0.63 ab 2.92±0.30 a 1.98±0.03 ab 2.74±1.01 a 2.26±0.22 a 2.63±0.98 a 4.68±2.76 a 2.51±0.01 a 18.68±1.76 b 18.27±0.41 b 28.83±2.54 a 27.10±3.85 a 24.85±3.05 ab
植株各组织氮肥分配率和氮肥利用率在不同处理间有一定差异。主干的氮肥分配率在T5 处理下最高且显著高于其他处理。其余各组织的氮肥分配率在不同处理下均无显著差异。叶片、一年生枝在T3 处理下氮肥利用率最高,分别为5.80%、6.72%。多年生枝在T3、T4 处理下氮肥利用率为5.83%、5.41%,与T1 处理有显著差异,T5 处理的氮肥利用率低于T3、T4处理,但无显著差异。主干在T5处理下氮肥利用率最高为2.79%,与其他处理有显著差异。中间砧在T3、T4、T5处理下氮肥利用率高于T1、T2处理,T5处理与T3、T4处理间无显著差异。主根在T5 处理下氮肥利用率最高(2.84%)。侧根在T4 处理下氮肥利用率最高(2.92%),与T1、T2 处理有显著差异,T5 处理与T3、T4 处理间无显著差异。其他各组织的氮肥利用率在不同处理间无显著差异。植株各组织的氮肥分配率和氮肥利用率总体趋势多数为T3、T4、T5处理高于T1、T2处理,且T1 与T2 之间,T3、T4、T5 之间无显著差异。表明氮肥滴灌条件有利于氮肥在植株内的分配及提高氮肥利用效率,磷钾肥不同施用方式影响较小。
植株器官从肥料中吸收分配到的15N量对该器官全氮量的贡献率(Ndff)反映了植株器官对肥料15N的吸收征调能力[16]。在葡萄的研究中表明,在植株体内根部以及叶片对氮肥的竞争能力更强[17]。前人在苹果中的研究发现,同一器官的Ndff值在滴灌处理条件下要高于撒施处理[18]。任饴华等[19]认为水氮耦合使植株各器官对氮的吸收征调能力更强,促进了植株对15N 的吸收。路永莉等[20]认为水肥耦合在促进植物养分吸收方面效果显著。本试验的结果显示,在N滴灌,PK滴灌水溶肥(化学试剂)、N滴灌,PK撒施水溶肥(化学试剂)、N滴灌PK撒施普通肥料时,叶片、多年生枝、中间砧、侧根、毛细根的Ndff 值要高于N 撒施,PK 滴灌水溶肥(化学试剂)、N 撒施,PK 撒施水溶肥(化学试剂)处理。由此说明,水溶性氮肥更利于树体对于氮素的吸收征调。氮肥保持施用方式不变时,磷钾肥滴灌或撒施对植株的Ndff值并无显著影响。
不同滴灌方式不仅影响植株器官的Ndff值,还影响了各器官的氮素的分配。各器官中15N 占全株15N总量的百分比反映了肥料15N在树体内的分布及其在各器官间迁移的规律[17]。本试验中叶片在N撒施,PK撒施水溶肥(化学试剂)处理是氮肥分配率最高,说明撒施处理利于营养器官的生长。这与赵林等[21]的研究结论一致。田歌等[18]的研究也认为撒施处理有利于营养器官的生长。滴灌施氮处理下一年生枝、主干、中间砧、侧根、毛细根的氮肥分配率更高,说明氮肥滴灌处理有利于提高树体贮藏器官的营养水平以及第2年新生器官的建造[18]。本试验不同施肥处理下,叶片和枝条的分配率均高于其他部位。与前人研究中植株体内氮素更易向生命活动更活跃的区域移动[17, 22]的结论相一致。T3、T4 处理下叶片和枝条的分配率显著高于其他部位。说明滴灌更利于氮素向生长活跃区域移动。
苹果的养分吸收主要依靠根系对土壤中养分的吸收能力,土壤中养分的移动性决定了根系养分的吸收效率,因此水肥一体化更有利于根系吸收养分[23]。前人研究表明,如果施氮过浅,暴露在地表的氮肥容易挥发,从而难以被根系吸收[18,24]。并且,如果撒施氮肥,肥料更加难以进入果树的根层,雨水和灌溉会造成一定的损失,导致氮肥利用率低。任饴华等[19]认为水量是限制苹果氮素利用的重要因素,水氮耦合能够提高氮肥利用率。滴灌施肥弥补了传统灌溉与施肥分离的不足,使水肥均匀地作用到作物的根区,滴灌处理的苹果根系主要活动层较常规条件深,根系分布广、活力增强,吸收根多,能够增加作物对肥料的吸收[25]。路永莉等[26]认为水肥一体化技术在同等施肥量下能够明显提高养分和水分的利用效率,同时也有助于降低果园的养分流失量。本试验中氮肥滴灌条件下植株各器官的氮肥利用率更高,与前人的研究相似。在氮肥滴灌的条件下,磷钾肥滴灌会比撒施氮肥利用率更高,周兴本等[27]在葡萄中的研究发现提高磷钾肥比例可以提高葡萄植株的氮肥利用率,说明磷钾肥能够促进氮肥的吸收。
目前水肥一体化技术还存在着一定的限制因素。比如,设备建设资金投入大,技术人员匮乏,农民缺乏认识,生产技术落后,国内规模化生产水溶性肥料的企业较少,生产工艺缺乏创新性,生产技术方面仍然比不上发达国家,农民对国内产品信任度不高等[28-29]。近年来,国内水溶性肥料的需求量和市场规模不断扩大,然而,由于国内水溶性肥料生产技术存在缺陷,进口水溶性肥料仍占较高的市场份额。市面上水溶性肥料的种类繁多,产品质量参差不齐,时常出现假冒伪劣产品[30]。在果农施肥过程中,氮肥中尿素、碳铵、硝铵等水溶性很好的氮肥便可作为水溶肥进行滴灌使用,而农用磷酸二铵、过磷酸钙、农用硫酸钾、常规复合肥等水溶性差,不能应用于滴灌系统。市场常见大量元素水溶肥价格是普通复合肥的4倍左右。
肥料中氮、磷、钾施入土壤后,除了被植物所吸收利用的部分外,一部分以各种途径损失(离开土壤),一部分留存在土壤中进入无效化过程。其中,氮肥在土壤中的转化以气态损失和淋溶损失为主,而施入到土壤中的磷钾肥则大部分进入到无效过程,积累于土壤中。生产中氮肥采用滴灌方式,可以实现少量多次施用以达到减少损失的目的。相对于滴灌方式,磷钾肥撒施必然也会造成磷钾肥当季利用率的降低。然而,磷钾肥残效长,相对损失少,在保证植株当季可利用养分足够的前提下,可以采用撒施普通肥料的方式。因此,生产中可以推广氮肥滴灌普通尿素,磷钾肥撒施常规肥料以实现节约生产成本的目的。
综上所述,不同的滴灌组合对树体15N吸收和分配利用的效果不同。当全部肥料滴灌的时候氮肥吸收量及利用率最高,但与氮肥滴灌、磷钾肥撒施无显著性差异。考虑到磷钾水溶肥料的使用成本远远高于普通磷钾肥料,因此,在生产中可以考虑采用氮肥滴灌、磷钾肥撒施普通肥料的施肥方式,在保证满足果树树体养分需求、提高肥料利用率的情况下最大限度地降低果园管理的生产投入成本。
[1]张彦昌,赵德英,程存刚,徐锴,袁继存.辽宁苹果栽培现状及技术发展趋势[J].山西果树,2013(6):39-41.ZHANG Yanchang,ZHAO Deying,CHENG Cungang,XU Kai,YUAN Jicun.Current status and technical development trend of apple cultivation in Liaoning[J].Shanxi Fruits,2013(6):39-41.
[2]罗利华,胡田田,陈绍民,李灿,李梦月,崔晓路,臧学文.水肥一体化模式对苹果叶片矿质元素含量的影响[J].西北农林科技大学学报(自然科学版),2021,49(8):2-12.LUO Lihua,HU Tiantian,CHEN Shaomin,LI Can,LI Mengyue,CUI Xiaolu,ZANG Xuewen.Effects of fertigation mode on contents of mineral elements in apple leaves[J].Journal of Northwest A & F University (Natural Science Edition),2021,49(8):2-12.
[3]张青,栗方亮,孔庆波,庄木来.不同减量施肥模式对蜜柚产量、品质及经济效益的影响[J].果树学报,2021,38(3):361-371.ZHANG Qing,LI Fangliang,KONG Qingbo,ZHUANG Mulai.Effect of different reduced fertigation modes on the yield,qualitu and econemic benefits of honey pomelo[J].Journal of Fruit Science,2021,38(3):361-371.
[4]MESERET D,OLUMANA D M,TOLESSA L O.Implications of adopting drip irrigation system on crop yield and gender-sensitive issues:The case of Haramaya District,Ethiopia[J].Journal of Open Innovation:Technology,Market,and Complexity,2020,6(4):96.
[5]FAN J C,LU X J,GU S H,GUO X Y.Improving nutrient and water use efficiencies using water-drip irrigation and fertilization technology in Northeast China[J].Agricultural Water Management,2020,241:1-7.
[6]MA X C,SANGUINET K A,JACOBY P W.Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth[J].Agricultural Water Management,2020,231:1-11.
[7]王力,孙兆军,焦炳忠,韩磊,李骏奇,任秋实.不同灌溉定额及施氮量对西瓜产量及水分利用效率的影响[J].中国农村水利水电,2017(7):18-21.WANG Li,SUN Zhaojun,JIAO Bingzhong,HAN Lei,LI Junqi,REN Qiushi.The effect of different irrigation quota and nitrogen fertilizer on watermelon yield and water use efficiency[J].China Rural Water and Hydropower,2017(7):18-21.
[8]邓箴,尹娟,尹亮.不同水肥处理对宁夏枸杞产量及水肥利用效率的影响[J].节水灌溉,2021(3):25-30.DENG Zhen,YIN Juan,YIN Liang.Effect of different water and fertilizer treatments on yield and water-fertilizer use efficiency of Lycium barbarum in Ningxia[J].Water Saving Irrigation,2021(3):25-30.
[9]臧小平,井涛,周登博,王尉,丁哲利,王必尊,谢江辉,马蔚红.滴灌减量施肥对香蕉产量、养分吸收利用及效益的影响[J].灌溉排水学报,2019,38(S1):22-27.ZANG Xiaoping,JING Tao,ZHOU Dengbo,WANG Wei,DING Zheli,WANG Bizun,XIE Jianghui,MA Weihong.Effects of reducing nitrogen,phosphorus and potassium fertilizer on yield,nutrient absorption and economic benefit of banana under drip irrigation[J].Journal of Irrigation and Drainage,2019,38(S1):22-27.
[10]孔庆波,栗方亮,张青.滴灌条件下减量施钾对香蕉产量及土壤钾素平衡的影响[J].植物营养与肥料学报,2021,27(2):312-321.KONG Qingbo,LI Fangliang,ZHANG Qing.Effect of potassium fertilizer reduction on banana yield and soil potassium balance under dripping irrigation[J].Journal of Plant Nutrition and Fertilizers,2021,27(2):312-321.
[11]武继承,杨永辉,郑惠玲,潘晓莹.水肥互作对小麦-玉米周年产量及水分利用率的影响[J].河南农业科学,2015,44(7):67-72.WU Jicheng,YANG Yonghui,ZHENG Huiling,PAN Xiaoying.Effects of water-fertilizer interaction on yield and anniversary water use efficiency of wheat and corn[J].Journal of Henan Agricultural Sciences,2015,44(7):67-72.
[12]邓兰生,涂攀峰,张承林,李中华,赖忠明.水肥一体化技术在香蕉生产中的应用研究进展[J].安徽农业科学,2011,39(25):15306-15308.DENG Lansheng,TU Panfeng,ZHANG Chenglin,LI Zhonghua,LAI Zhongming.Application of fertigation technology in banana[J].Journal of Anhui Agricultural Sciences,2011,39(25):15306-15308.
[13]杨凡,田军仓,朱和,沈晖.不同滴灌方式及水肥组合对酿酒葡萄光合与产量的影响[J].节水灌溉,2020(11):53-58.YANG Fan,TIAN Juncang,ZHU He,SHEN Hui.Effects of different drip irrigation methods and water and fertilizer combination on photosynthesis and yield of wine grape[J].Water Saving Irrigation,2020(11):53-58.
[14]赵佐平,段敏,同延安.不同施肥技术对不同生态区苹果产量及品质的影响[J].干旱地区农业研究,2016,34(5):158-165.ZHAO Zuoping,DUAN Min,TONG Yan’an.Effects of different fertilizations on yield and fruit quality of Fuji apple in different ecological regions[J].Agricultural Research in the Arid Areas,2016,34(5):158-165.
[15]刘星,曹红霞,廖阳,周宸光.滴灌模式对黄土高原苹果树生长、产量及根系分布的影响[J].干旱地区农业研究,2020,38(4):57-66.LIU Xing,CAO Hongxia,LIAO Yang,ZHOU Chenguang.Effects of drip irrigation methods on the growth,yield and root distribution of apple trees on the Loess Plateau[J].Agricultural Research in the Arid Areas,2020,38(4):57-66.
[16]丁宁,彭玲,安欣,陈倩,姜翰,姜远茂.不同时期施氮矮化苹果对15N 的吸收、分配及利用[J].植物营养与肥料学报,2016,22(2):572-578.DING Ning,PENG Ling,AN Xin,CHEN Qian,JIANG Han,JIANG Yuanmao.Absorption,distribution and utilization of dwarf apple trees to15N applied in different growth stages[J].Journal of Plant Nutrition and Fertilizers,2016,22(2):572-578.
[17]陈丽楠,韩晓日,孙占祥,刘秀春.局部根区交替灌溉与氮素耦合对葡萄生长及15N-尿素利用的影响[J].核农学报,2021,35(2):447-453.CHEN Linan,HAN Xiaori,SUN Zhanxiang,LIU Xiuchun.Coupling effects of alternate partial root-zone irrigation and nitrogen rate on growth and15N-urea use of grapes[J].Journal of Nuclear Agricultural Sciences,2021,35(2):447-453.
[18]田歌,李慧峰,田蒙,刘晓霞,陈倩,朱占玲,姜远茂,葛顺峰.不同水肥一体化方式对苹果氮素吸收利用特性及产量和品质的影响[J].应用生态学报,2020,31(6):1867-1874.TIAN Ge,LI Huifeng,TIAN Meng,LIU Xiaoxia,CHEN Qian,ZHU Zhanling,JIANG Yuanmao,GE Shunfeng.Effects of different integration of water and fertilizer modes on the absorption and utilization of nitrogen fertilizer and fruit yield and quality of apple trees[J].Chinese Journal of Applied Ecology,2020,31(6):1867-1874.
[19]任饴华,丰艳广,陈建明,姜翰,葛顺峰,魏绍冲,姜远茂.水氮耦合对苹果幼树生长及15N 吸收利用的影响[J].山东农业科学,2015,47(5):49-53.REN Yihua,FENG Yanguang,CHEN Jianming,JIANG Han,GE Shunfeng,WEI Shaochong,JIANG Yuanmao.Influence of water-nitrogen coupling on growth and15N absorption and utilization of apple saplings[J].Shandong Agricultural Sciences,2015,47(5):49-53.
[20]路永莉,高义民,同延安,杨宪龙,林文.滴灌施肥对渭北旱塬红富士苹果产量与品质的影响[J].中国土壤与肥料,2013(1):48-52.LU Yongli,GAO Yimin,TONG Yan’an,YANG Xianlong,LIN Wen.Effects of fertigation on yield and quality of Fuji apple in Weibei dry-land region[J].Soil and Fertilizer Sciences in China,2013(1):48-52.
[21]赵林,姜远茂,彭福田,张序,房祥吉,李洪波.苹果园春季土施尿素的利用及其在土壤中的累积[J].园艺学报,2009,36(12):1805-1809.ZHAO Lin,JIANG Yuanmao,PENG Futian,ZHANG Xu,FANG Xiangji,LI Hongbo.Studies on utilization and accumulation dynamics of spring soil15N-urea application in apple orchard[J].Acta Horticulturae Sinica,2009,36(12):1805-1809.
[22]何雪菲,马泽跃,张文太,陈波浪,张茜,柴仲平.施氮水平对‘库尔勒香梨’15N-尿素的吸收、分配及利用的影响[J].果树学报,2020,37(9):1336-1345.HE Xuefei,MA Zeyue,ZHANG Wentai,CHEN Bolang,ZHANG Xi,CHAI Zhongping.Effect of different nitrogen application levels on15N-urea absorption,distribution and utilization of‘Kuerlexiangli’pear[J].Journal of Fruit Science,2020,37(9):1336-1345.
[23]张大鹏,姜远茂,彭福田,魏绍冲,葛顺峰,李艳,周恩达.滴灌施氮对苹果氮素吸收和利用的影响[J].植物营养与肥料学报,2012,18(4):1013-1018.ZHANG Dapeng,JIANG Yuanmao,PENG Futian,WEI Shaochong,GE Shunfeng,LI Yan,ZHOU Enda.Effects of N application with dripping irrigation on N absorption and utilization of apple[J].Journal of Plant Nutrition and Fertilizers,2012,18(4):1013-1018.
[24]葛顺峰,姜远茂,魏绍冲,房祥吉.不同供氮水平下幼龄苹果园氮素去向初探[J].植物营养与肥料学报2011,17(4):949-955.GE Shunfeng,JIANG Yuanmao,WEI Shaochong,FANG Xiangji.Nitiogen balance under different nitrogen application rates in young apple orchards[J].Journal of Plant Nutrition and Fertilizers,2011,17(4):949-955.
[25]张大鹏,姜远茂,彭福田,李艳,周恩达,丁宁,刘建才,孙聪伟.常规施肥和滴灌施肥对苹果园土壤硝态氮分布的影响[J].山东农业科学,2011(10):54-56.ZHANG Dapeng,JIANG Yuanmao,PENG Futian,LI Yan,ZHOU Enda,DING Ning,LIU Jiancai,SUN Congwei.Effects of conventional fertilization and fertigation on distribution of nitrate in apple orchard[J].Shandong Agricultural Sciences,2011(10):54-56.
[26]路永莉,白凤华,杨宪龙,李茹,高义民,同延安.水肥一体化技术对不同生态区果园苹果生产的影响[J].中国生态农业学报,2014,22(11):1281-1288.LU Yongli,BAI Fenghua,YANG Xianlong,LI Ru,GAO Yimin,TONG Yan’an.Effect of fertigation on apple production in different ecological-regions orchards[J].Chinese Journal of Eco-Agriculture,2014,22(11):1281-1288.
[27]周兴本,郭修武,王丛丛,刘士冲,李坤,郭印山,李成祥.水肥配比对葡萄生长发育及15N-硫酸铵吸收分配及利用的影响[J].干旱地区农业研究,2015,33(2):183-190.ZHOU Xingben,GUO Xiuwu,WANG Congcong,LIU Shichong,LI Kun,GUO Yinshan,LI Chengxiang.Effects of water and fertilizer ratio on the growth and absorption distribution and utilization of15N-ammonium sulfate of grape[J].Agricultural Research in the Arid Areas,2015,33(2):183-190.
[28]刘秀丽,李志胜.苹果水肥一体化技术研究进展[J].烟台果树,2017(4):6-9.LIU Xiuli,LI Zhisheng.Research progress of apple water and fertilizer integration technology[J].Yantai Fruits,2017(4):6-9.
[29]陈俊,原洪涛.高浓缩悬浮型水溶性肥料生产工艺及产业化研究[J].中国盐业,2020(17):34-38.CHEN Jun,YUAN Hongtao.Research on the production process and industrialization of highly concentrated suspensiontype water-soluble fertilizer[J].China Salt Industry,2020(17):34-38.
[30]梁嘉敏,杨虎晨,张立丹,陈小娟,陈静,樊小林,孙少龙.我国水溶性肥料及水肥一体化的研究进展[J].广东农业科学,2021,48(5):64-75.LIANG Jiamin,YANG Huchen,ZHANG Lidan,CHEN Xiaojuan,CHEN Jing,FAN Xiaolin,SUN Shaolong.Research progress of water- soluble fertilizer and fertigation in China[J].Guangdong Agricultural Sciences,2021,48(5):64-75.
Effect of different combinations of dripping and spreading fertilization of N,P and K fertilizers on uptake,distribution and utilization of15N in Fuji apple