柑橘浮皮是宽皮柑橘果实成熟过程中和采后容易发生的一种生理性障碍,具体表现为果实白皮层崩溃,果皮与包裹果肉的囊瓣膜分离后浮起,果皮与果肉间产生空隙[1]。果实浮皮导致果皮物理性能变差,采收运输及货架期易受机械损伤,引起果实品质劣变,也会加剧果实枯水[2],严重时表现为果皮果肉完全分离、果肉汁胞皱缩粒化、营养物质大量减少、果实风味劣变、完全失去食用价值和商品价值[3]。应用完熟栽培可提高温州蜜柑果实品质,但同时也大大加重了果实浮皮率,据统计为30%~50%[4],严重制约了柑橘产业效益的提升。浮皮与柑橘品种、栽培管理、气候、采收时期和采后贮藏环境等因素均相关[5]。目前关于浮皮的研究,主要集中在生理生化变化、细胞形态学变化、栽培技术和防治措施等方面,但浮皮发生的调控机制尚未明确[1],需要从多角度进行深入研究。
不同柑橘种类与品种之间浮皮特性存在较大差异,柚、橙、柠檬等不易浮皮,而橘类宽皮柑橘(如椪柑)、柑类宽皮柑橘(如温州蜜柑大分)、杂柑类柑橘(如春见、不知火)等容易浮皮[6]。由于柑橘遗传背景复杂,尚缺乏遗传背景相似的浮皮研究材料。芽变选种是柑橘育种的重要手段之一,相较于传统果树育种方式,芽变选种可在不改变原始品种优良性状的前提下改良个别性状,是目前果树品种改良较为快速、有效的方法[7]。温州蜜柑是中国黄岩本地广橘传至日本后产生的实生变异[8],迄今为止通过芽变选种从中选育出190多个优良品种,如大分、上野、日南1号等特早熟和大津四号、山下红等普通温州蜜柑品种[9]。
笔者前期在生产中获得了一个宫川温州蜜柑的芽变株系(简称芽变系),其果实完熟采收基本不浮皮,且保留了宫川果皮光滑、风味浓郁、化渣性好的优良性状。本试验以宫川及其耐浮皮芽变系为材料,比较果实主要品质指标,浮皮特性以及果皮组织、解剖和白皮层超微结构异同;通过常温贮藏试验比较两者耐贮性;较为全面地总结了该芽变系的优良性状,为柑橘耐浮皮新品种的选育和柑橘品种结构优化提供优良种质,同时也为柑橘浮皮机制研究提供适宜材料。
供试材料为宫川温州蜜柑(Citrus unshiu Marc.‘Miyagawa wase’)及其芽变系成熟果实,采自浙江省宁海县剑民柑橘合作社。于2014、2015、2017、2019、2020 年10 月底至11 月初的果实成熟期,采集园中大小、成熟度基本一致,且无机械损伤和病虫害的果实,用于品质测定和浮皮指数统计;其中2020年的果实同时用于果皮组织解剖结构分析和常温贮藏试验。
1.2.1 果实品质测定 利用电子天平测量果实单果质量;利用游标卡尺测量并读取果实的纵径、横径数据。使用色差计(CR-10,Konica Minolta,日本),选用Lab色空间显示,测量果实L*、a*、b*值。色调角h0值可表示实际感知的颜色,如红色(0°)、橙色(45°)、黄色(90°)、蓝绿色(180°),计算为h0=tan-1(b/a)。柑橘色泽指数CCI 可作为柑橘颜色深浅的判断指标,数值越大色泽越深,CCI=1000×a*/(L*×b*)。使用手持式硬度计(FHM-1,竹村,日本)选取果实赤道位置分别对称的4个点,测定果实硬度;使用数显折射仪(PAL-1,Atago,日本)测定果实可溶性固形物含量;采用NaOH 滴定法测定可滴定酸含量;采用2,6-二氯靛酚法测定维生素C含量。每个指标至少5次重复。
1.2.2 果实形状观察和浮皮指数测定 分别于2014、2015、2017、2019、2020 年选取宫川及其芽变系成熟果实,通过五面图观察比较果实形状特征,随机选取25 个果实统计浮皮指数。贮藏期间每时期选取12 个果实用于统计浮皮指数。浮皮指数统计按图1[4]所示方法进行,通过果实纵切面判断浮皮程度,分为浮皮无(0 级)、浮皮轻(1级,仅果柄端浮皮)、浮皮中等(2级,果柄端与两侧均浮皮)、浮皮重(3级,全果浮皮)4个等级,按以下公式计算:
图1 浮皮分级程度
Fig.1 Classification degree of puffiness
浮皮指数=Σ(浮皮级果数×代表级值)/(调查总果数×浮皮最重一级的代表值)×100
1.2.3 果皮结构观察 将果皮与果肉分离,利用游标卡尺测量赤道线处果皮厚度。利用体视显微镜(SMZ25,Nikon,日本)观察比较果皮的表皮和切面结构。以石蜡切片制片法[10]对果皮进行切片,利用显微镜(BH-2,OLYMPUS,日本)观察果皮细胞解剖结构并拍照。以树脂超薄切片制片法[10]对白皮层进行切片,利用透射电镜(H-7650,Hitachi,日本)观察白皮层细胞超微结构并拍照。
1.2.4 果实耐贮性试验 宫川及其芽变系成熟果实采收后置于温度为(20±1)℃、相对湿度75%的恒定环境中进行贮藏,为期100 d。每20 d 各取12 个果实样品进行品质测定,包括浮皮指数、果皮色差、果实失重率、果皮硬度、可溶性固形物含量、可滴定酸含量、维生素C含量等指标,方法同1.2.1,其中失重率/%=(初始质量-当次测量质量)/初始质量×100。
数据采用Origin 2018(美国)作图,并用SPSS 22.0(IBM SPSS Statistics,美国)进行t检验分析。
2014—2020 年连续采样分析,结果表明:宫川果实平均单果质量为100.87 g,芽变系为102.90 g。宫川纵径47.55 mm,横径60.99 mm,芽变系纵径48.79 mm,横径63.08 mm,两者果形差别不大。h0值分别为69.76°和68.19°,CCI 指数分别为6.20 和6.51,宫川及其芽变系成熟期果实均为橙黄色,且色彩深浅相近,无显著差异。宫川果实平均硬度为0.77 kg·cm-2,芽变系果实平均硬度为0.96 kg·cm-2;芽变系果实可溶性固形物含量达13.88%,高于宫川;宫川果实平均可滴定酸含量为0.60%,芽变系为0.62%;芽变系的Vc 含量显著高于宫川,达29.87 mg·100 g-1。
综上所述,芽变系果实的硬度、可溶性固形物含量、Vc 含量与宫川果实存在显著差异(p <0.05);果实单果质量、果形指数、果皮颜色等与宫川无显著差异(表1,表2)。
表1 宫川及其芽变系果实成熟期外在品质比较
Table 1 Comparison of fruit appearance quality between Miyagawa and its mutant
注:表中数据为2014—2020 年的平均值。下同。
Note:The data in the table are the average values from 2014 to 2020.The same below.
表2 宫川及其芽变系果实成熟期内在品质比较
Table 2 Comparison of fruit intrinsic quality between Miyagawa and its mutant
注:*表示t 测验中差异显著(p <0.05)。
Note:*represents statistically significant differences by t-test(p <0.05).
宫川及其芽变系果实均无果颈,宫川果基略凸,呈锥形;芽变系果基较平,无凸起,果心充实,中心柱较小,囊瓣数9~12瓣,整齐且不易分离,两者果形指数均小于1.0,果实为扁圆形(图2)。
图2 宫川及其芽变系果实形态对比
Fig.2 Comparison of morphology between Miyagawa and its mutant fruits
A.宫川果实;B.芽变系果实。
A.The fruit of Miyagawa;B.The fruit of bud mutant.
如表3 所示,连续多年在果实成熟期观察统计宫川及其芽变系果实浮皮性状,发现历年来宫川的浮皮指数始终明显高于芽变系,其中在2017年宫川浮皮指数达67.70,果实浮皮较为严重,而芽变系浮皮指数仅为14.8,耐浮皮表现良好。芽变系果实在成熟期采摘后浮皮很轻。
表3 宫川及其芽变系成熟果实浮皮指数比较
Table 3 Comparison of fruits puffing index between Miyagawa and its mutant
宫川果皮厚度为2.32 mm,芽变系为1.65 mm,两者差异极显著(p <0.01)。观察宫川及其芽变系果面(图3),发现两者油胞密度分别为0.735个·mm-2和0.860个·mm-2,芽变系油胞排列较为紧密有序,细胞间隙小;宫川油胞大小为0.781 mm×0.664 mm(横径×纵径),芽变油胞大小为0.724 mm×0.595 mm(横径×纵径),两者差异不显著。
图3 宫川及其芽变系果皮表面及切面图
Fig.3 Comparison of peel structure between Miyagawa and its mutant fruits
A~C.宫川果皮;D~F.芽变系果皮。
A-C.The peel of Miyagawa;D-F.The peel of bud mutant.
果实成熟期果皮细胞解剖结构(图4-A~B)显示宫川油胞层分泌囊近圆形,芽变系则为椭圆形,宫川分泌囊的纵横经明显大于芽变系;两者白皮层薄壁细胞都有一定程度的细胞间隙存在,但宫川空隙面积更大且其薄壁细胞排列混乱,部分细胞甚至形状不完整,相对而言,芽变系薄壁细胞排列规整且细胞形状完整。进一步观察白皮层细胞超微结构(图4-C,D),结果显示成熟期宫川白皮层细胞质壁分离明显,细胞器挤压分布于中间细胞膜位置,部分初生壁出现瓦解,叶绿体逐渐降解,结构完整的线粒体数量减少,出现空泡化的囊泡,表现出细胞组织器官衰老降解;而芽变系细胞膜无明显质壁分离现象,细胞结构相对完整,能找到完整的叶绿体和线粒体,细胞衰老程度低于宫川。
图4 宫川及其芽变系果皮解剖结构和白皮层超微结构观察
Fig.4 Anatomical structure of the peel and ultrastructure of the mesocarp between Miyagawa and its bud mutant
A.宫川果皮解剖结构;B.芽变系果皮解剖结构;C.宫川白皮层细胞超微结构;D.芽变系白皮层细胞超微结构;SC.分泌囊;AL.白皮层;PW.初生壁;CM.细胞膜;M.线粒体;S.淀粉粒;ML.胞间层;CH.叶绿体。
A.Anatomical structure of the peel of Miyagawa;B.Anatomical structure of the peel of bud mutant;C.Ultrastructure of albedo in Miyagawa;D.Ultrastructure of albedo in bud mutant;SC.Secretory Cavities;AL.Albedo;PW.Primary wall;CM.Cell membrane;M.Mitochondria;S.Starch grain;ML.middle lamella;CH.Chloroplast.
如图5所示,室温贮藏条件下,宫川及其芽变系果实在前60 d外观保持较高品质,果皮光滑无褶皱;贮藏80 d 后两者果皮均明显皱缩,宫川果实果蒂处开始出现发黑现象;贮藏100 d后,果实外观均出现明显劣变。结合图5和表4表现,贮藏起始,芽变系果实浮皮指数为3.33,几乎无浮皮症状,而宫川果实浮皮指数达10.0,浮皮症状较明显。随着贮藏进程,宫川果实浮皮程度逐渐加重,第40天,果柄处及两侧均浮皮,浮皮指数达23.33;第80天,宫川已出现全果浮皮现象,且伴随着果肉汁胞萎缩,浮皮指数达到了41.67。芽变系果实在贮藏过程中,浮皮程度始终较轻,未见严重浮皮。贮藏第100天,宫川浮皮指数达44.05,芽变系仅为19.61。
表4 宫川及其芽变系果实贮藏期间浮皮指数比较
Table 4 Comparison of fruits puffing index between Miyakawa and its mutant during storage
图5 宫川及其芽变系在贮藏过程中果实形态对比
Fig.5 Comparison of fruit morphology during storage of Miyagawa and its mutant fruits
Mi.宫川;Bm.芽变系。
Mi.Miyagawa;Bm.Bud mutant.
果实色泽是重要的外观品质指标,可作为果实衰老的标志之一。贮藏过程中,宫川和芽变系果实CCI指数呈上升趋势,贮藏前40 d,芽变系CCI值略高于宫川;而到贮藏第80天宫川果实CCI值显著高于芽变系(p <0.05);在贮藏末期,相较于宫川,芽变系CCI 值较低(图6-A)。随着贮藏进程,宫川和芽变系果实失重率呈现明显上升趋势。贮藏20~40 d之间,果实失重率上升幅度较大,宫川失重率由4.97%增长至10.83%,芽变系则由4.21%增长到了9.20%,后期失重率变化较为平缓。宫川果实的失重率在贮藏40 d 时极显著高于芽变系(p <0.01),在贮藏60 d、80 d、100 d,宫川的失重率均高于芽变系,两者差异达显著水平(p <0.05)(图6-B)。
图6 宫川及其芽变系果实贮藏期内在品质比较
Fig.6 Comparison of fruit intrinsic quality during storage of Miyagawa and its mutant
*表示t 测验中的差异显著(p<0.05);**表示差异极显著(p<0.01)。
*represents statistically significant differences in t-test(p<0.05);**represents very statistically significant differences(p<0.01).
硬度是果实采后耐贮性的重要指标。由图6-C可见,在贮藏过程中,宫川及其芽变系果实硬度在贮藏期间总体都呈下降趋势,芽变系果实硬度始终高于宫川,两者差异达极显著水平(p <0.01)。宫川果实硬度在贮藏40 d 出现较大幅度下降,随后趋于平缓;而芽变系果实硬度始终保持平缓下降。贮藏80 d,宫川果实硬度为0.72 kg·cm-2,较贮藏初始下降了30.77%;芽变系果实硬度为0.87 kg·cm-2,较初始值下降22.32%。
糖酸变化是影响果实品质的关键因素,宫川和芽变系果实可溶性固形物含量在贮藏过程中呈略微上升趋势,且芽变系可溶性固形物含量除第40 天外,始终极显著高于宫川(p <0.01)。宫川贮藏初始可溶性固形物含量为13.74%,贮藏第60天达到最高值为15.75%;芽变系初始为15.27%,贮藏第80天上升到最高值(18.09%)(图6-D)。在贮藏期间,酸通常都作为呼吸底物被首先消耗,宫川及其芽变系果实可滴定酸含量总体都呈现下降趋势。贮藏初始,宫川和芽变系果实可滴定酸含量分别为0.66%和0.69%;第40天,宫川可滴定酸含量降至0.36%,芽变系为0.41%,显著高于宫川;第80天,宫川可滴定酸含量降至0.30%,显著低于芽变系(p <0.05);第100天,宫川果实可滴定酸含量为0.24%,较初始下降了63.6%;芽变系含酸量为0.31%,降幅为55.1%(图6-E)。
维生素C(Vc)含量是柑橘果实内在品质的重要指标之一。如图6-F所示,宫川和芽变系果实Vc含量都呈现持续下降的趋势。芽变系Vc 含量始终高于宫川,除第80 天外,整个贮藏期间差异达极显著水平(p <0.01)。贮藏第10天,宫川Vc 含量较0 d下降84.71%,芽变系下降79.21%。
芽变是指芽分生组织细胞的遗传物质发生自然突变,当受到外界环境如冻害、干旱、机械损伤等刺激时,枝梢顶端分生组织细胞内的遗传物质有可能发生改变[11]。柑橘属于较易发生自然变异的果树,芽变既可为杂交育种提供新的种质资源,又可直接从中选出优良的新品种,芽变选种是柑橘品种改良极为重要的方法。芽变的变异性状通常存在多样性,有形态方面,如树型大小、分枝多少、果实大小、形状、色泽[12]、无核有核[13]等;或生理方面,如熟期早晚[14]、坐果率高低、抗病抗逆性强弱等。宫川是由温州蜜柑最原始在来系中的早生系芽变产生[15],之后又从宫川芽变系以及后代中选出了众多优秀品系,包括早熟的由良[16]、上野、协山、田口、山下红等。本研究材料属于宫川芽变系,突出性状为耐浮皮,通过连续多年观察性状稳定,且其果实可溶性固形物含量、可滴定酸含量、维生素C 含量均高于宫川,是一个适于完熟栽培的优良变异。目前利用转录组测序已筛选获得了可区分宫川及其芽变系的SNP 位点(数据未发表)。
柑橘果皮不仅决定了果实的外观性状,果皮的结构特征也直接影响果皮的光滑度、剥皮性、耐贮性,且与浮皮等生理性障碍密切相关[17]。难剥皮的柑橘品种通常具有不易浮皮、耐贮运的特点,如甜橙、柠檬、柚等,宽皮柑橘一般容易浮皮而较易剥皮,但不同品种间也有所差异[18]。Goldenberg 等[19]发现易剥皮的柑橘白皮层松散且与囊瓣膜间存在空隙即浮皮;而难剥皮的柑橘白皮层紧实,粘连在囊瓣膜上。张晓楠等[20]也发现易剥皮的向山成熟果实白皮层与囊瓣膜存在明显空隙。本研究材料耐浮皮芽变系成熟果实也表现出白皮层与囊瓣膜紧密粘连,果皮比宫川显著薄。细胞和亚细胞结构观察结果表明芽变系白皮层细胞较为完整,排列整齐,而宫川白皮层细胞排列分散,部分细胞甚至破裂皱缩,存在明显的质壁分离现象,细胞衰老程度较高,这与郝春梅[21]在柑橘枯水研究中的结果一致。浮皮果的呼吸强度高于正常果,且果皮高于果肉,果实中可溶性糖和有机酸含量明显减少[22]。代谢组学分析发现成熟浮皮果白皮层中肌醇半乳糖苷(galactinol)、棉子糖(raffinose)和葡萄糖-1-磷酸(glucose-1-phosphate)等28种代谢物含量高于正常果,而柠檬酸(citric acid)、丙氨酸(alanine)、γ-氨基丁酸(γ-aminobutyric acid)等10种代谢物含量低于正常果,其中柠檬酸在浮皮果未成熟时就开始下降,可作为浮皮果早期鉴定的指标[23]。
柑橘果实浮皮是一个复杂的生理生化过程,受多种因素调控。推测可能是细胞衰老降解引起细胞密度下降,组织出现空隙,从而导致浮皮发生。已有研究表明,采后温州蜜柑果实中果皮细胞壁代谢相关酶等活性增强,抗氧化酶活性下降,膜脂过氧化作用加剧,果皮衰老加速,最终诱发浮皮[24]。同时,浮皮果脱落酸含量始终高于正常果[25],而参与调控赤霉素和细胞分裂素信号转导的大部分基因都在浮皮果白皮层中下调,推断成熟早期参与初始代谢的基因表达丰度的改变使得果皮细胞生长的能力减弱[23]。此外,果皮中Ca2+含量与浮皮程度呈负相关,生产中经钙处理可抑制温州蜜柑浮皮的发生[26]。后续笔者将利用宫川及其耐浮皮芽变系材料,开展果皮解剖学和生理学、基于多组学联合的浮皮发生分子调控机制研究,挖掘柑橘浮皮相关关键基因,为耐浮皮柑橘品种的遗传改良和新种质创制奠定基础。
柑橘果实采后品质劣变速度决定了贮藏期的长短。宽皮柑橘浮皮与耐贮性关系密切,降低温州蜜柑果实采后浮皮发生,有利于提高果实耐贮性。硬度是判断果实贮藏品质的重要指标之一[27]。本研究中宫川和芽变系果实硬度在贮藏期间都呈现下降趋势,这与张群等[28]的研究结果一致。果胶对于细胞壁的机械强度和物理结构的稳定性起着关键性作用,随着贮藏时间的延长,果皮中的果胶含量也逐渐下降,细胞壁中原果胶酶促降解是果实软化的主要原因之一[29-30]。宫川果实硬度始终显著低于同时期芽变系,是否与果皮果胶代谢协同变化有待于今后进一步研究。在贮藏期间,芽变系果实内在品质优于宫川,表明耐浮皮芽变系具有优良的耐贮性能。
宫川耐浮皮芽变系保留了母本宫川风味浓郁、口感良好的优良品质,且较母本具有耐浮皮和耐贮藏的优良性状。芽变系果皮从组织和解剖结构均表现为耐浮皮性状相符的特征,该株系具有成为耐浮皮新品种的潜力,也是研究浮皮机制的好材料。
[1] 张世怡,柯甫志,赵迪,徐凯,秦巧平,徐建国,肖金平,张岚岚.柑橘果实浮皮发生机理的研究进展[J].园艺学报,2016,43(9):1719-1725.ZHANG Shiyi,KE Fuzhi,ZHAO Di,XU Kai,QIN Qiaoping,XU Jianguo,XIAO Jinping,ZHANG Lanlan.Progress in studies on mechanism of puffing disorder and its regulation in citrus fruits[J].Acta Horticulturae Sinica,2016,43(9):1719-1725.
[2] MARTINELLI F,IBANEZ A M,REAGAN R L,DAVINO S,DANDEKAR A M.Stress responses in citrus peel: Comparative analysis of host responses to Huanglongbing disease and puffing disorder[J].Scientia Horticulturae,2015,192:409-420.
[3] SHARMA R R,AWASTHI O P,KUMAR K.Pattern of phenolic content,antioxidant activity and senescence-related enzymes in granulated vs non-granulated juice-sacs of‘Kinnow’mandarin (Citrus nobilis × C.deliciosa)[J].Journal of Food Science and Technology,2016,53(3):1525-1530.
[4] 石学根,徐建国,张林,凡改恩,林媚.温州蜜柑完熟果实的浮皮与贮藏性之间的关系[J].浙江农业学报,2008,20(4):304-307.SHI Xuegen,XU Jianguo,ZHANG Lin,FAN Gai’en,LIN Mei.The relationship between peel puffing and storage of full ripe fruits of Satsuma mandarin[J].Acta Agriculturae Zhejiangensis,2008,20(4):304-307.
[5] 姚世响,曹琦,谢姣,邓丽莉,曾凯芳.椪柑浮皮时挥发性成分变化及萜烯类物质合成基因表达特征[J].食品科学,2018,39(10):131-137.YAO Shixiang,CAO Qi,XIE Jiao,DENG Lili,ZENG Kaifang.The changes of volatile constituents and expression of genes involved in terpenoid biosynthesis in peel of ponkan fruit during peel puffing[J].Food Science,2018,39(10):131-137.
[6] SHARMA R R,SINGH R,SAXENA S K.Characteristics of citrus fruits in relation to granulation[J].Scientia Horticulturae,2006,111(1):91-96.
[7] 王粲宇.甜橙芽变选种及变异材料鉴定[D].武汉:华中农业大学,2019.WANG Canyu.Selection and identification of bud-sports of sweet orange[D].Wuhan:Huazhong Agricultural University,2019.
[8] 孙珍珠,李秋月,王小柯,赵婉彤,薛杨,冯锦英,刘小丰,刘梦雨,江东.宽皮柑橘种质资源表型多样性分析及综合评价[J].中国农业科学,2017,50(22):4362-4372.SUN Zhenzhu,LI Qiuyue,WANG Xiaoke,ZHAO Wantong,XUE Yang,FENG Jinying,LIU Xiaofeng,LIU Mengyu,JIANG Dong.Comprehensive evaluation and phenotypic diversity analysis of germplasm resources in mandarin[J].Scientia Agricultura Sinica,2017,50(22):4362-4372.
[9] 罗杨.柑橘变异材料的遗传鉴定与品质分析[D].武汉:华中农业大学,2010.LUO Yang.The genetic identification and fruit quality analysis of the variations in citrus[D].Wuhan:Huazhong Agricultural University,2010.
[10] 张世怡.‘宫川’温州蜜柑浮皮的细胞学和转录组学研究[D].杭州:浙江农林大学,2018.ZHANG Shiyi.Cytopathology and transcriptome analysis of puffing in Satsuma mandarin‘Miyagawa’[D].Hangzhou:Zhejiang A&F University,2018.
[11] 张敏,邓秀新.柑橘芽变选种以及芽变性状形成机理研究进展[J].果树学报,2006,23(6):871-876.ZHANG Min,DENG Xiuxin.Advances in research of citrus cultivars selected by bud mutation and the mechanism of formation of mutated characteristics[J].Journal of Fruit Science,2006,23(6):871-876.
[12] 袁高鹏,淳长品,彭良志,黄宗俊,黄同麒,杨惠栋,付行政,凌丽俐,曹立.‘纽荷尔’脐橙及其芽变品种‘龙回红’脐橙的比较研究[J].果树学报,2017,34(9):1117-1124.YUAN Gaopeng,CHUN Changpin,PENG Liangzhi,HUANG Zongjun,HUANG Tongqi,YANG Huidong,FU Xingzheng,LING Lili,CAO Li.A study on the difference of‘Newhall’navel orange and its sport‘Longhuihong’navel orange[J].Journal of Fruit Science,2017,34(9):1117-1124.
[13] 常媛媛,李先信,盛玲,陈鹏,郭玲霞,卢晓鹏,李菲菲.‘早蜜’椪柑采后主要品质性状变化研究[J].江西农业大学学报,2021,43(2):270-278.CHANG Yuanyuan,LI Xianxin,SHENG Ling,CHEN Peng,GUO Lingxia,LU Xiaopeng,LI Feifei.Postharvest changes in main quality traits of‘Zaomi’ponkan[J].Acta Agriculturae Universitatis Jiangxiensis,2021,43(2):270-278.
[14] 张雅剑.锦橙晚熟性状机理探讨及候选基因的鉴定[D].武汉:华中农业大学,2015.ZHANG Yajian.The late-ripening mechanism of a Jincheng sweet orange mutant and the identification of related genes[D].Wuhan:Huazhong Agricultural University,2015.
[15] 沈德绪,王元裕,陈力耕.柑橘遗传育种学[M].北京:科学出版社,1998.SHEN Dexu,WANG Yuanyu,CHEN Ligeng. Citrus genetics and breeding[M].Beijing:Science Press,1998.
[16] 李和孟,冯家浩,曾余力,徐建国,柯甫志,徐凯.特早熟温州蜜柑‘由良’在浙江宁海的引种试验[J].中国南方果树,2017,46(1):29-31.LI Hemeng,FENG Jiahao,ZENG Yuli,XU Jianguo,KE Fuzhi,XU Kai.Introduction experiment of extra-early Citrus unshiu‘Yura’in Ninghai,Zhejiang[J].South China Fruits,2017,46(1):29-31.
[17] 余歆,张晓楠,赵晓春.柑橘果皮的生物活性物质和重要园艺性状[J].园艺学报,2021,48(4):825-836.YU Xin,ZHANG Xiaonan,ZHAO Xiaochun.Bioactive compounds in citrus peel and peel-related important horticultural traits[J].Acta Horticulturae Sinica,2021,48(4):825-836.
[18] YU X,ZHANG X N,JIANG D,ZHU S P,CAO L,LIU X F,SHEN W X,ZHAO W T,ZHAO X C.Genetic diversity of the ease of peeling in mandarins[J].Scientia Horticulturae,2021,278:109852.
[19] GOLDENBERG L,YANIV Y,PORAT R,CARMI N.Mandarin fruit quality:A review[J].Journal of the Science of Food and Agriculture,2018,98(1):18-26.
[20] 张晓楠,余歆,叶子茂,刘小丰,朱延松,杨胜男,王旭,刘梦雨,赵晓春.宽皮柑橘果实的剥皮性及其与细胞壁多糖的关系[J/OL].园艺学报.https://doi.org/10.16420/j.issn.0513-353x.2020-0973.2021-06-17.ZHANG Xiaonan,YU Xin,YE Zimao,LIU Xiaofeng,ZHU Yansong,YANG Shengnan,WANG Xu,LIU Mengyu,ZHAO Xiaochun.Ease of peeling and its relationship with cell wall polysaccharidesin mandarin fruits[J/OL].Acta Horticulturae Sinica.https://doi.org/10.16420/j.issn.0513-353x.2020-0973.2021-06-17.
[21] 郝春梅.柑橘贮藏期枯水的生理生化机理研究[D].重庆:西南大学,2009.HAO Chunmei.Physiological-biochemical mechanism of the section-drying Citrus fruit during storage[D].Chongqing:Southwest University,2009.
[22] BURDON J,LALLU N,YEARSLEY C,OSMAN S,BILLING D,BOLDINGH H.Postharvest conditioning of Satsuma mandarins for reduction of acidity and skin puffiness[J].Postharvest Biology and Technology,2007,43(1):102-114.
[23] IBANEZ A M,MARTINELLI F,REAGAN R L,URATSU S L,VO A,TINOCO M A,PHU M L,CHEN Y,ROCKE D M,DANDEKAR A M.Transcriptome and metabolome analysis of citrus fruit to elucidate puffing disorder[J].Plant Science,2014,217(1):87-98.
[24] 张秋明,魏岳荣,郑玉生.柑橘果实浮皮发生机制及控制途径研究Ⅱ.特早熟温州蜜柑果实浮皮与衰老的关系[J].湖南农业大学学报(自然科学版),2001,27(1):32-34.ZHANG Qiuming,WEI Yuerong,ZHENG Yusheng.Mechanism of puffiness and the methods of control in citrus fruit Ⅱ.Relation between puffiness and senescence of the early-maturing Satsuma mandarin[J].Journal of Hunan Agricultural University(Natural Sciences),2001,27(1):32-34.
[25] 贺明阳,洪敏,王日葵,喻最新,朱莉,周炼,邓涂静.宽皮柑橘浮皮时脱落酸积累变化及其代谢基因表达特征[J].食品科学,2021,42(17):54-62.HE Mingyang,HONG Min,WANG Rikui,YU Zuixin,ZHU Li,ZHOU Lian,DENG Tujing.Changes in abscisic acid accumulation and gene expression involved in abscisic acid metabolism in Mandarins (Citrus reticulata Blanco) after peel puffing[J].Food Science,2021,42(17):54-62.
[26] 孙钧,陈俊伟,石学根,徐红霞,庞茜,张林,谢鸣.复合营养液处理对完熟采收‘宫川’温州蜜柑果实品质与浮皮影响[J].浙江农业学报,2011,23(2):283-287.SUN Jun,CHEN Junwei,SHI Xuegen,XU Hongxia,PANG Qian,ZHANG Lin,XIE Ming.Effect of complex nutrient solution on fruit quality and puffing in full mature harvest Satsuma mandarin fruit[J].Acta Agriculturae Zhejiangensis,2011,23(2):283-287.
[27] CHAMPA W A H,GUNASEKERA N,WILSON W S,HEWAjULIGE I G N,WEERASINGHE W M S S K,KUMARA B A M S.Postharvest treatment of cinnamon (Cinnamomum zeylanicum) bark oil and hexanal incorporated bio-wax maintains quality and extends marketable life of lime(Citrus aurantifolia Swingle)[J].International Journal of Fruit Science,2020,20(1):76-88.
[28] 张群,刘伟,吴跃辉,付复华,朱玲风,单杨.特早熟柑橘贮藏期间物性与理化品质变化及相关性分析[J].湖南农业科学,2016(1):71-76.ZHANG Qun,LIU Wei,WU Yuehui,FU Fuhua,ZHU Lingfeng,SHAN Yang.Study on changes and correlation of texture and physical-chemical quality during storage of a early maturing variety of citrus[J].Hunan Agricultural Sciences,2016(1):71-76.
[29] QIAN M,ZHANG Y K,YAN X Y,HAN M Y,LI j J,LI F,LI F R,ZHANG D,ZHAO C P,SERRANO M.Identification and expression analysis of polygalacturonase family members during peach fruit softening[J].International Journal of Molecular Sciences,2016,17(11):1933.
[30] 佟兆国,王飞,高志红,周军,徐秋红,章镇.果胶降解相关酶与果实成熟软化[J].果树学报,2011,28(2):305-312.TONG Zhaoguo,WANG Fei,GAO Zhihong,ZHOU Jun,XU Qiuhong,ZHANG Zhen.Advances in research on the relationship between pectolytic enzymes and fruit softening[J].Journal of Fruit Science,2011,28(2):305-312.
Studies on fruit puffing and storability characteristics of Miyagawa satsuma orange and its puffing-resistant bud mutant