红阳猕猴桃生长发育期树干液流特征及其与环境因子的关系

吴佳伟1,李苇洁1*,杨瑞2,吴迪1

1贵州省山地资源研究所,贵阳 550001;2贵州大学林学院,贵阳 550025)

摘 要:【目的】分析红阳猕猴桃不同生育期树干液流特征及气象因子,探索猕猴桃耗水变化规律及环境影响因子,为猕猴桃的合理灌溉提供科学理论依据。【方法】于2020年3月1日至8月31日,采用热扩散式液流探针法对5年生的红阳猕猴桃树干液流测定的同时监测环境因子。【结果】(1)猕猴桃日耗水变化主要呈“低-高-低”变化趋势,表现为“昼高夜低”,夜间存在微弱耗水;不同生育期猕猴桃树干液流启动时间存在差异。(2)猕猴桃日均耗水量在不同的生育期存在差异(p <0.05)。不同生育期日均耗水量为:果实膨大期>果实成熟期>开花坐果期>萌芽展叶期。(3)不同生育期猕猴桃树干液流日变化与太阳辐射、气温、风速、土壤温度和土壤湿度呈显著正相关,与相对湿度呈显著负相关。(4)猕猴桃不同天气条件下树干液流量日变化为:晴天>阴天>雨天。【结论】猕猴桃耗水量受环境因子和生长特性影响,不同生育期耗水量存在差异,为不同生育期耗水量制定合理的蓄水措施和灌溉方式提供重要依据。热扩散式液流探针法可快速便捷测定猕猴桃耗水量,可应用到果树耗水测定中,节约耗水测定时间。

关键词:猕猴桃;树干液流;耗水量;环境因子

植物的蒸腾作用将土壤、植物、大气紧密的联系在一起,植物和植物、植物和环境间的相互作用,显著地反映出蒸腾的重要性[1]。准确掌握树体的蒸腾特征,及其环境耦合机制,对于制定合理的灌溉制度、高效地利用水资源具有重要意义[2]。植物树干液流是指由于叶片内外存在蒸腾压力的作用,引起植物体内水分向上移动用于蒸腾作用的过程,是植物失水的主要原因[3],树干液流基本用于树体蒸腾作用[4-5],因此林木的耗水变化特征可直接测定树干液流,用树干液流量对林木耗水进行定量分析。研究表明气候因子与树干液流的变化有密切的联系[6-7],基于单株尺度植物耗水规律的明晰,对于准确估算大面积植被蒸腾耗水量及作物实际耗水具有重要的作用[8-9]

国外对植物树干液流研究相对较早,1985 年Granier[5]发明了探针液流测定系统,沿用至今。我国开始对植物树干液流的研究是从20 世纪80 年代末90年代初,由刘奉觉等[10]利用热脉冲技术测定了杨树树干液流的变化规律,此后热技术得到广泛应用。王力等[11]监测得出黄土塬区苹果树干液流呈明显的昼夜变化单峰曲线,环境因子对树干液流速率产生明显影响;李波等[12]对东北寒区日光温室葡萄液流特征研究表明,葡萄液流受到光合辐射、气温、水汽压亏缺等影响,液流启动时间具有一定的滞后效应;凡超等[13]研究得出广东省荔枝树干液流速率与太阳辐射和空气温度呈正相关,与空气湿度呈负相关;王云霓等[14]对不同坡位华北落叶松人工林树树干液流研究得出,树干液流受到林木所在坡位影响,计算坡面蒸腾作用时应充分考虑坡位因素;黄雅茹等[15]对乌兰布和沙漠中国沙棘树干液流研究表明,树干液流呈“几”字宽峰曲线,夜间存在微弱液流;张晓艳等[16]对绿洲荒漠过渡带梭梭树干液流研究表明,树干液流速率受环境因子影响,不同天气条件下树干液流速率存在差异;张建国等[17]对黄土高原半干旱区辽东栎树干液流研究表明,树干液流日变化总体上与太阳辐射和空气水汽压亏缺呈相同趋势,树干液流速率还受土壤含水量等影响;赵付勇等[18]对不同灌水定额对新疆核桃树干液流速率研究表明,灌水量低会影响核桃树干液流速率;赵天宇等[19]对新疆胡杨树树干液流速率研究表明,树干液流速率受到气温的影响;杨瑞等[20]对喀斯特区云南鼠刺树干液流研究结果表明,树干液流速率受到生境和土壤水分的影响;不同树种树干液流速率存在差异,树干液流速率受到土壤水分和环境因子影响。研究不同地区和不同树种耗水对树种的合理布局、制定科学灌溉措施具有重要的意义,因此研究精品水果猕猴桃的耗水,提出科学的管理灌溉措施,提高猕猴桃的产量和品质,对促进当地水果产业和经济发展具有重要作用。

研究区位于贵州省六盘水市水城区米箩镇,采用(TDP)茎流监测系统连续监测猕猴桃生育期(2020 年3 月—8 月)自然条件下猕猴桃树干液流及其累积量,剖析其动态变化规律与环境因子的响应机制。分析不同生育期猕猴桃耗水差异和环境因子关系,建立合理蓄水设施,弥补该区域降雨时空分布差异大的不足,最终提出科学的灌溉措施。

1 材料和方法

1.1 试验区概况

试验区位于贵州省水城区米箩镇俄嘎村(105°45′30″~106°04′45″E,27°08′30″~27°20′00″N),海拔1200 m,属于温凉湿润的高原亚热带季风气候,较为温和,很少出现极端天气,总降雨量充足。年平均气温16~18 ℃,年平均降水量在800~1000 mm之间,有霜期一年中占50 d,年日照时数高达1560 h,大于10 ℃的年有效积温在4500~5600 ℃之间,通常情况下在猕猴桃生长旺季白天气温在30~35 ℃之间,夜间气温只达白天气温的三分之一,气温昼高夜低,有独特的小气候特点,比较适宜栽培猕猴桃。试验地土壤为黄壤,土壤肥力中上,有灌溉条件[21]。虽然总降雨量充足,但是存在严重的降雨时空分布不均。

1.2 试验设计及方法

在试验区选择生长状况良好的9 株5 年生红阳猕猴桃(嫁接砧木为猕猴桃实生苗)(表1)为材料,在距地面1.3 m处插入(FLGS-TDP)探针,进行树干液流的监测。取得了萌芽期、开花期及果实膨大期树干液流数据。环境因子的监测使用美国CR300智能环境监测站,监测试验区小区域的环境因子(太阳辐射、相对湿度、风速、空气温度和土壤温、湿度),与猕猴桃不同生育期树干液流数据同步,测定了2020年3月1日—8月31日间的环境因子数据。

表1 样木基本概况
Table 1 Basic overview of sample wood

(FLGS-TDP)扦插式热扩散茎流计购于北京力高泰科技有限公司,系统由1 个CR1000 数据采集器、1 个AM16/32 扩展板、2 个AVRD 调压器和TDP传感器等组成,传感器TDP-30,热电偶数1、探针间距40 mm,功率0.15~0.20 W,电线规格3 m/5芯,加热电阻50 Ω,运行电压3 V,信号输出(μV·℃-1)。

具体操作步骤为,选定样株后,使用罗盘仪确定样木北方向,在胸径1.3 m高处刮去死皮,用次氯酸钠清洗过的钻头钻出与传感器相同的孔,将探针插入其中,注意探针的深度,插入后用橡皮泥封住接口处,利用泡沫和胶带等工具固定探针。最后,外层包裹在PVR 护罩中,然后用防水胶带密封,密封用玻璃胶水涂覆,防止水分进入,连接电源后正常使用。数据每30 min进行平均值计算并储存,测定方式为定点连续观测。

1.3 数据处理

(1)猕猴桃耗水。树干蒸腾速率(液流密度)计算公式为:

式中,K为无量纲参数,dt为双热电耦温差,Vi为液流密度(蒸腾速率)(g·m-2·s-1)。

单位时间内树干液流量(液流速率)计算公式为:

式中,SA为树干边材横截面积(cm2),F 液流速率(g·h-1),3600为时间转换系数。

单株猕猴桃全天液流累计量(耗水量)计算公式:

式中,WS为单株猕猴桃全天耗水量(g),F 为液流速率(g·h-1)。

(2)边材面积。利用实地取得样木的样芯,测定其心材、边材和半径值,根据公式计算样木的边材面积和胸径。拟合得到猕猴桃边材面积与胸径的回归关系:

式中,SA为树干边材横截面积(cm2),D 为样木胸径(cm),R为相关系数。

(3)水汽压亏缺。水汽压亏缺(VPD)是温度与空气相对湿度的综合表达值,体现二者的共同作用效果。计算公式如下:

式中,VPD 为水汽压亏缺(kPa),T 为大气温度(℃),RH为空气相对湿度(%)。

(4)整合蒸腾变量。为了更好地解释太阳辐射(Rt)和水汽压亏缺(VPD)的协同作用,引入整合蒸腾变量VT,具体计算公式如下:

式中,VT为整合蒸腾变量(kPa·W·m-2),VPD为水汽压亏缺(kPa),Rt太阳辐射(W·m-2)。

在各生育期测定液流数据:萌芽展叶期(开花前的9、18、27 d),开花坐果期(开花后的8、16、24 d),果实膨大期(开花后的59、92、125 d),果实成熟期(开花后的143、153、163 d),代表整个生育期的均值。Excel 用作数据统计,方差分析、相关性分析和多元回归模型利用SPSS实现,利用Origin制图。

2 结果与分析

2.1 不同生育期猕猴桃的日耗水变化特征

从图1 中可以看出,猕猴桃的树干液流变化趋势在萌芽展叶期、开花坐果期、果实膨大期和果实成熟期存在显著差异。猕猴桃树干液流的启动时间、达到最大值和最小值的时间、树干液流日变化曲线等不同。

图1 不同生育期猕猴桃耗水量日变化进程
Fig.1 Diurnal variation process of water consumption of kiwifruit in different growth stages

不同生育期猕猴桃的树干液流速率变化趋势具有相似性。猕猴桃萌芽展叶期、开花坐果期、果实膨大期和果实成熟期的树干液流速率总体呈“几”字形的变化趋势,表现“低-高-低”的变化模式;不同生育期达到最大值的时间存在差异,夜间存在微弱液流;不同生育期液流速率存在差异,总体表现为果实膨大期(3.02 kg)>果实成熟期(2.94 kg)>开花坐果期(0.99 kg)>萌芽展叶期(0.77 kg)。

猕猴桃萌芽展叶期的平均液流速率为31.89 g·h-1,平均日液流累积量为765.36 g,最大液流速率为78.84 g·h-1;猕猴桃开花坐果期的平均液流速率为41.21 g·h-1,平均日液流累积量为989.04 g,最大液流速率为142.05 g·h-1;猕猴桃果实膨大期的平均液流速率为125.90 g·h-1,平均日液流累积量为3 021.6 g,最大液流速率为356.72 g·h-1;猕猴桃果实成熟期的平均液流速率为122.40 g·h-1,平均日液流累积量为2 937.6 g,最大液流速率为305.96 g·h-1。猕猴桃果实膨大期的全天液流量累积量为最大,分别是萌芽展叶期、开花坐果期的3.9倍和3倍。

2.2 不同天气条件下猕猴桃树干液流差异

选取生长旺盛的猕猴桃果实膨大期时的3种天气条件(晴天、阴天、雨天)进行调查。典型晴天为2020 年7 月14 日、15日,典型阴天为2020 年7 月17日、18日,典型雨天为2020年7月4日、5日。

2.2.1 晴天条件下猕猴桃树干液流差异 晴天树干液流速率总体呈“低-高-低”宽口单或双峰型变化趋势。树干液流启动后迅速升高,8:00—10:00间增幅较大,10:00—12:00 间缓慢增加,增幅较小;12:00—14:00间树干液流速率出现短暂的下降,这时就会出现双峰型变化趋势;猕猴桃树干液流速率昼夜差异明显,表现为“昼高夜低”,0:00—6:00有微弱的下降趋势;全天最大液流速率达356 g·h-1(图2)。

图2 晴天条件下树干液流速率与环境因子日变化进程
Fig.2 Diurnal variation process of SAP flow rate and environmental factors under sunny condition

RnVPDVTTs 作为自变量,树干液流速率作为因变量,进行多元回归分析(表2),得到晴天条件拟合方程为F=-476.655.+0.260Rn+49.647VPD+1.758VT+42.698TsR2=0.956)。拟合方程决定系数达0.956,方程对晴天条件下树干液流速率的变化情况有很好的解释作用。

表2 晴天条件下猕猴桃树干液流速率和环境因子回归模型
Table 2 Regression model of SAP flow rate and environmental factors of kiwifruit under sunny conditions

2.2.2 阴天条件下猕猴桃树干液流差异 阴天树干液流速率总体呈“低-高-低”窄口单或双峰型变化趋势。树干液流启动后增幅较为稳定,缓慢上升;13:00时树干液流速率达到最大值;猕猴桃树干液流速率昼夜差异明显,表现为“昼高夜低”,0:00—6:00有微弱的下降趋势;全天最大液流速率达298 g·h-1,对比晴天树干液流速率降低(图3)。

图3 阴天条件下树干液流速率与环境因子日变化进程
Fig.3 Diurnal variation process of SAP flow rate and environmental factors under cloudy conditions

RnVPDVTTs 作为自变量,树干液流速率作为因变量,进行多元回归分析(表3),得到阴天条件拟合方程为F=-476.655+0.103Rn+63.639VPD+0.813VT+20.663TsR2=0.751)。拟合方程决定系数达0.751,方程对阴天条件下树干液流速率的变化情况有较好的解释作用。

表3 阴天条件下猕猴桃树干液流速率和环境因子回归模型
Table 3 Regression model of SAP flow rate and environmental factors of kiwifruit under cloudy days

2.2.3 雨天条件下猕猴桃树干液流差异 雨天树干液流速率总体呈“低-高-低”多峰型变化趋势。树干液流启动后逐渐升高,增幅变化小;猕猴桃树干液流速率昼夜差异明显,表现为“昼高夜低”,夜间有微弱的上下波动趋势;全天最大液流速率达295 g·h-1,液流速率低于晴天和阴天(图4)。

图4 雨天条件下树干液流速率与环境因子日变化进程
Fig.4 Diurnal variation process of SAP flow rate and environmental factors under rainy conditions

RnVPDVTTs 作为自变量,树干液流速率作为因变量,进行多元回归分析(表4),得到雨天条件拟合方程为F=-396.774.+3.643Rn+228.831VPD+0.566VT-1.854TsR2=0.674)。拟合方程决定系数达0.674,方程对雨天条件下树干液流速率的变化情况有一定的解释作用。

表4 雨天条件下猕猴桃树干液流速率和环境因子回归模型
Table 4 Regression model of SAP flow rate and environmental factors of kiwifruit under cloudy days

2.3 不同生育期猕猴桃树干液流与环境因子间的关系

猕猴桃在生育期的生长非常迅速,对水分的需求比较敏感,生育期水分合理补给对猕猴桃的生长发育具有重要的作用。为了解猕猴桃耗水特征与环境因子的关系,对猕猴桃生育期环境因子响应特征进行分析。为了更加准确分析气象因子对猕猴桃耗水的影响,剔除不显著相关因子后对环境因子整合进行回归分析,拟合因子主要有太阳有效辐射(Rn,W·m-2)、水汽压亏缺(VPD,kPa)、整合蒸腾变量(VT,kPa·W·m-2)、土壤温度(Ts,℃)。猕猴桃蒸腾量和树干液流日累计量(日耗水量)变化相似,与环境因子间的响应特征也基本相似,但由树干液流量放大到树体蒸腾,研究区域尺度放大同时拟合效果下降。

2.3.1 萌芽展叶期树干液流速率与环境因子关系萌芽展叶期树干液流速率与环境因子相关性显著。运用萌芽展叶期在2 月13 日—3 月8 日的树干液流速率数据与环境因子数据进行相关性分析得出,相关系数如表5所示。风速与树干液流速率相关系数最小,此阶段受温度和太阳辐射的影响作用较大。同时各个环境因子之间有一定的相关性。一天中太阳辐射的增强会影响到温度、相对湿度和土壤温度等。

表5 萌芽展叶期猕猴桃树干液流速率和环境因子相关关系
Table 5 Correlation between SAP flow rate and environmental factors at germination and leaf spreading stage of kiwifruit

注:*表示p <0.05 显著相关;**表示p <0.01 显著相关。下同。
Note:*is p <0.05 and**is p <0.01 significont correlation.The same below.

由图5 可以看出,Rn 与萌芽展叶期猕猴桃树干液流速率表现为正相关关系,随Rn增加树干液流速率增速先增加后减小,趋于平缓后略有下降;当Rn较小时,它是液流速率的主要影响因子,随着Rn 逐渐增大,Rn 对树干液流速率的影响作用减弱,变为影响的次要因子;VPD与树干液流速率表现为正相关关系,随VPD增加树干液流速率逐渐增加后趋于稳定;VTRn与树干液流速率变化趋势相似,其原因是VTRn 根据经验公式计算而来;Ts 与树干液流速率表现为正相关关系,随着Ts 增加,树干液流速率先是保持平稳后大幅度增加。

图5 萌芽展叶期树干液流速率与环境因子回归分析
Fig.5 Regression analysis of SAP flow rate and environmental factors at germination and leaf spreading stage

根据获取的萌芽展叶期猕猴桃树干液流数据和该时段的环境因子(太阳辐射、空气温度、相对湿度、土壤温度)计算出的VPDVT 进行回归分析,从图5中可以看出树干液流与太阳有效辐射、水汽压亏缺、整合蒸腾变量和土壤温度呈二次多项式关系。对萌芽展叶期猕猴桃树干液流和环境因子进行回归拟合,由表6 可以看出,RnVPDVTTs的决定系数分别为0.893、0.727、0.972、0.725,决定系数越高,该因子对猕猴桃的耗水影响较大;以RnVPDVTTs 为自变量、猕猴桃树干液流(F)为因变量,进行多元回归分析,得拟合方程F=60.985+0.055Rn+11.844VPD+1.043VT-3.119TsR2=0.918)。由此可以看出4 个因子对树干液流速率的决定系数达0.918,对液流速率有较好的解释作用。

表6 萌芽展叶期猕猴桃树干液流速率和环境因子回归模型
Table 6 Regression model of SAP flow rate and environmental factors at germination and leaf spreading stage of kiwifruit

2.3.2 开花坐果期树干液流速率与环境因子关系开花坐果期猕猴桃树干液流速率与环境因子的相关性显著。运用开花坐果期在3月9日—4月3日的树干液流速率数据与环境因子数据进行相关性分析得出,相关系数如表7 所示。开花坐果期树干液流速率与太阳有效辐射、气温、风速、土壤温度、土壤湿度呈显著正相关(p <0.01),与空气湿度呈显著负相关(p <0.01);相关系数大小为气温(0.935)>相对湿度(0.921)>土壤温度(0.779)>太阳有效辐射(0.713)>风速(0.572),风速与树干液流速率相关系数最小,该阶段受到温度和相对湿度的影响较大。同时环境因子之间存在显著的相互作用。

表7 开花坐果猕猴桃耗水量和环境因子相关关系
Table 7 Correlation between water consumption and environmental factors in flowering and fruit-setting kiwifruit

由图6 可以看出,Rn 与开花坐果期猕猴桃树干液流速率表现为正相关关系,随Rn增加树干液流速率增速先增加后减小,趋于平缓后略有下降;当Rn较小时,它是液流速率的主要影响因子,随着Rn 逐渐增大,Rn 对树干液流速率的影响作用减弱,变为影响的次要因子;VPD与树干液流速率表现为正相关关系,随VPD增加树干液流速率逐渐增加后趋于稳定;VTRn与树干液流速率变化趋势相似;Ts与树干液流速率表现为正相关关系,随着Ts 增加,树干液流速率先是保持平稳后大幅度增加。

图6 开花坐果期树干液流速率与环境因子回归分析
Fig.6 Regression analysis of SAP flow rate and environmental factors at flowering and fruiting stage

对开花坐果期猕猴桃树干液流和环境因子进行回归拟合,由表8 可以看出,RnVPDVTTs的决定系数分别为0.931、0.915、0.984、0.684,决定系数越高,对猕猴桃的耗水影响较大;以RnVPDVTTs为自变量、猕猴桃树干液流(F)为因变量,进行多元回归分析,得拟合方程F=-301.524+0.336Rn-77.366VPD+2.529VT+22.777TsR2=0.962)。由此可以看出4 个因子对树干液流速率的决定系数达0.962,对液流速率有较好的解释作用。

表8 开花坐果期猕猴桃树干液流速率和环境因子回归模型
Table 8 Regression model of SAP flow rate and environmental factors at flowering and fruit-setting stage of kiwifruit

2.3.3 果实膨大期树干液流速率与环境因子关系果实膨大期树干液流速率与环境因子相关性显著。运用果实膨大期在4 月3 日—7 月20 日的树干液流速率数据与气象因子数据进行相关性分析得出,相关系数如表9所示。相关系数大小为气温(0.973)>相对湿度(0.957)>土壤温度(0.956)>太阳有效辐射(0.697)>风速(0.644),风速与树干液流速率相关系数最小。

表9 果实膨大期猕猴桃液流速率和环境因子相关关系
Table 9 Correlation between fluid flow rate and environmental factors of kiwifruit during fruit expansion

由图7 可以看出,Rn 与萌芽展叶期猕猴桃树干液流速率表现为正相关关系,随Rn增加树干液流速率增速先增加后减小,趋于平缓后略有下降;当Rn较小时,它是液流速率的主要影响因子,随着Rn 逐渐增大,Rn 对树干液流速率的影响作用减弱,变为影响的次要因子;VPD与树干液流速率表现为正相关关系,随VPD增加树干液流速率逐渐增加后趋于稳定;VTRn与树干液流速率变化趋势相似;Ts与树干液流速率表现为正相关关系,随着Ts 增加,树干液流速率先是保持平稳后大幅度增加。

图7 果实膨大期树干液流速率与环境因子回归分析
Fig.7 Regression analysis of SAP flow rate and environmental factors during fruit expansion

对果实成熟期猕猴桃树干液流和环境因子进行回归拟合,由表10可以看出,RnVPDVTTs的决定系数分别为0.628、0.963、0.805、0.918,决定系数越高,对猕猴桃的耗水影响较大;以RnVPDVTTs为自变量、猕猴桃树干液流(F)为因变量,进行多元回归分析,得拟合方程F=-643.830+0.124Rn +26.082VPD+1.683VT+29.093TsR2=0.968)。由此可以看出4 个因子对树干液流速率的决定系数达0.968,对液流速率有较好的解释作用。

表10 开花坐果期猕猴桃树干液流速率和环境因子回归模型
Table 10 Regression model of SAP flow rate and environmental factors at flowering and fruiting stage of kiwifruit

2.3.4 果实成熟期树干液流速率与环境因子关系果实成熟期猕猴桃树干液流速率与环境因子相关性显著。运用果实成熟期在7月21日—8月20日的树干液流速率数据与气象因子数据进行相关性分析得出,相关系数如表11 所示。相关系数大小为气温(0.972)>相对湿度(0.957)>土壤温度(0.964)>风速(0.812)>太阳有效辐射(0.805),太阳有效辐射与树干液流速率相关系数最小。

表11 果实成熟期猕猴桃耗水量和环境因子相关关系
Table 11 Correlation between water consumption and environmental factors of kiwifruit at fruit ripening stage

由图8 可以看出,Rn 与果实成熟期猕猴桃树干液流速率表现为正相关关系,随Rn增加树干液流速率增速先增加后减小,趋于平缓后略有下降;当Rn较小时,它是液流速率的主要影响因子,随着Rn 逐渐增大,Rn 对树干液流速率的影响作用减弱,变为影响的次要因子;VPD与树干液流速率表现为正相关关系,随VPD增加树干液流速率逐渐增加后趋于稳定;VTRn与树干液流速率变化趋势相似;Ts与树干液流速率表现为正相关关系,随着Ts 增加,树干液流速率先是保持平稳后大幅度增加。

图8 果实成熟期树干液流速率与环境因子回归分析
Fig.8 Regression analysis of SAP flow rate and environmental factors at fruit ripening stage

对果实成熟期猕猴桃树干液流和环境因子进行回归拟合,由表12可以看出,RnVPDVTTs的决定系数分别为0.745、0.963、0.595、0.868,决定系数越高,对猕猴桃的耗水影响较大;以RnVPDVTTs为自变量、猕猴桃树干液流(F)为因变量,进行多元回归分析,得拟合方程F=-1955.991-1.845Rn +175.061VPD+17.850VT+81.869TsR2=0.973)。由此可以看出4 个因子对树干液流速率的决定系数达0.968,对液流速率有较好的解释作用。

表12 果实成熟期猕猴桃树干液流速率和环境因子回归模型
Table 12 Regression model of SAP flow rate and environmental factors in kiwifruit at fruit ripening stage

猕猴桃树干液流速率与太阳有效辐射、气温、风速、土壤温度显著正相关,与空气湿度呈显著负相关;猕猴桃果实成熟期日变化进程中,太阳有效辐射、气温、风速、土壤温度与猕猴桃树干液流速率存在一定的滞后效应;猕猴桃的液流速率大小主要受到RnVPDVTTs的影响。

3 讨论

(1)植物树干液流大小除受本身的生物学特性影响外还受到环境因子的影响[22-24]。研究表明树干液流速率大小受到环境因子的影响,不同植物在不同的生育期生长速度和环境因子存在差异,这与前人[25-29]研究结果相一致,不同植物树干液流日变化特征呈“几”字形变化趋势,环境因子对植物树干液流产生较大影响,当遭遇极端天气时,可适调节土壤环境条件,降低影响。在不同的生育期,猕猴桃树干液流日变化总体表现为“低-高-低”曲线变化趋势,昼夜节律,“昼高夜低”,但是其启动时间、峰值出现的时间、峰值大小和停止时间存在差异。猕猴桃在不同生育期对水分的需求量存在差异,果实膨大期耗水最大,其次依次为果实成熟期、开花坐果期、萌芽展叶期,这与大多数果树需水时期相类似[30-32]。猕猴桃果实成熟期耗水量最大,这与猕猴桃该时期的树体生长发育快速和果实体积迅速增加有关[33-35],根据猕猴桃在不同生育期的耗水量,及时的补充水分,保证猕猴桃正常生长。从环境因子来分析,试验区环境因子随时间变化,从萌芽展叶期-开花坐果期-果实彭大期,太阳辐射和气温逐渐增加,也是致使耗水增加的主要原因[36-39]。研究表明,猕猴桃的耗水略低于黄龙[40]和王昌[41]的研究结果,主要有以下原因:一是品种不同,耗水可能存在微弱差异;二是修剪程度不同,导致其冠幅上存在差异,进一步影响耗水;三是陕西和贵州存在地理上生境差异,导致猕猴桃耗水存在差异;四是贵州的产量相对较低,可能也是耗水较低的原因。

(2)不同天气条件下猕猴桃树干液流速率大小存在差异,具体表现为晴天>阴天>雨天。不同天气条件下液流速率差异的原因是受到环境因子的影响[27,42-43]。晴天温度较高,太阳辐射强,雨天温度相对较低,太阳辐射弱,致使液流速率表现为晴天>阴天>雨天,这与马长明等[44]和严昌荣等[45]对核桃和核桃楸研究结果相一致;雨天环境因子变化较大,导致液流速率出现明显波动,这与凡超等[13]、池波等[25]、陈立欣等[46]对荔枝树、兴安落叶松、水曲柳等树干液流变化特征研究的结果相一致,由此说明天气条件变化对林木耗水有较强影响,对物种空间分布具有指示作用。从拟合决定系数来看,RnVPDVTTs 决定系数高达0.973,很好的解释了环境因子对树干液流速率的影响,但是不同生育期、不同天气条件下,本研究表明,Rn 对整个生育期影响较大,VPDVT影响差异不显著;晴天和阴天条件下主要受Rn的影响,雨天VPD 影响较为显著。研究结果与Tie 等[47]研究结果一致,Tie 等[47]对华北杨树树干液流与环境因子相关性研究时发现,Rn对树干液流速率的影响最大,整个生长过程中Rn为主要影响因子。而Du等[48]研究表明VT对液流速率的影响要大于Rn,因此在猕猴桃种植地理位置选择时,可将Rn作为主要参考因素。

(3)针对研究区降雨量时空分布不均的情况,按照单位面积猕猴桃耗水量建立相应的蓄水设施,调整降雨量时空分布不均的情况,依据不同物候期猕猴桃耗水比例灌溉至正常生长所需的土壤含水量,以保证获得健康、高产、优质的猕猴桃。

4 结论

(1)猕猴桃日均耗水量在不同的生育期表现为果实膨大期(3.02 kg)>果实成熟期(2.94 kg)>开花坐果期(0.99 kg)>萌芽展叶期(0.77 kg),果实膨大期日均耗水量最大为萌芽展叶期的4 倍;日耗水变化主要呈“低-高-低”变化趋势,猕猴桃耗水主要发生在8∶00—16∶00 之间,表现为“昼高夜低”,夜间存在微弱耗水。

(2)猕猴桃不同生育期树干液流速率日变化与太阳辐射、气温、风速、土壤温度和土壤湿度呈显著正相关,与相对湿度显著负相关。环境因子太阳辐射、气温、风速、土壤温度与猕猴桃树干液流速率日变化趋势相似。以RnVPDVTTs 作为自变量,树干液流速率作为因变量,进行多元回归分析,获得萌芽展叶期拟合方程F=60.985+0.055Rn+11.844VPD+1.043VT-3.119TsR2=0.918),开花坐果期拟合方程F=-301.524+0.336Rn-77.366VPD+2.529VT+22.777TsR2=0.962),果实膨大期拟合方程F=-643.830+0.124Rn+26.082VPD+1.683VT+29.093TsR2=0.968),果实成熟期拟合方程F=-1955.991-1.845Rn+175.061VPD+17.850VT+81.869TsR2=0.973);4 个因子的拟合决定系数0.973。

(3)盛产期猕猴桃不同天气条件下树干液流量日变化总体表现为晴天>阴天>雨天。以RnVPDVTTs 作为自变量,树干液流速率作为因变量,进行多元回归分析,获得晴天条件拟合方程为F=-943.776+0.260Rn+49.647VPD+1.758VT+42.698TsR2=0.956),阴天条件拟合方程为F=-476.655.+0.103Rn+63.639VPD+0.813VT+20.663TsR2=0.751),雨天条件拟合方程为F=-396.774.+3.643Rn+228.831VPD+0.566VT-1.854TsR2=0.674);晴天、阴天和雨天拟合决定系数分别为0.965、0.751和0.674。

参考文献References:

[1] 康绍忠,熊运章,刘晓明.用彭曼一蒙特斯模式估算作物蒸腾量的研究[J].西北农业大学学报,1991,19(1):13-20.KANG Shaozhong,XIONG Yunzhang,LIU Xiaomin.A study of Penman-Monteith model to estimate transpiration from crops[J].Acta University Agriculturae Boreali-Occidentalis,1991,19(1):13-20.

[2] 龚道枝.苹果园土壤-植物-大气系统水分传输动力学机制与模拟[D].杨凌:西北农林科技大学,2005.GONG Daozhi.Dynamic mechanism of water transport in soilplant-atmosphere continnum (SPAC) of apple orchard and its simulation[D].Yangling:Northwest A&F University,2005.

[3] 张继澍.植物生理学[M].北京:高等教育出版社,1999:17-26.ZHANG Jishu.Plant physiology[M].Beijing:Higher Education Press,1999:17-26.

[4] LAPITAN R L,PARTTON W J.Seasonal variabilities in the distribution of the microclimatic factors and evapotranspiration in a shortgrass steppe[J].Agricultural and Forest Meteorology,1996,79(1/2):113-130.

[5] GRANIER A,BOBAY V,GASH J H C,GELPE J,SAUGIER B,SHUTTLEWORTH W J.Vapour flux density and transpiration rate comparisons in a stand of maritime pine (Pinus pinaster Ait.) in Les Landes forest[J].Agricultural and Forest Meteorology,1990,51(3/4):309-319.

[6] 于萌萌,张新建,袁凤辉,何秀,关德新,王安志,吴家兵,金昌杰.长白山阔叶红松林三种树种树干液流特征及其与环境因子的关系[J].生态学杂志,2014,33(7):1707-1714.YU Mengmeng,ZHANG Xinjian,YUAN Fenghui,HE Xiu,GUAN Dexin,WANG Anzhi,WU Jiabing,JIN Changjie.Characteristics of sap flow velocities for three tree species in a broadleaved Korean pine forest of Changbai Mountain,in relation to environmental factors[J].Chinese Journal of Ecology,2014,33(7):1707-1714.

[7] 吉春容,邹陈,范子昂,李新建.天山中段雪岭云杉树干液流变化及其与气象因子的关系[J].干旱区资源与环境,2013,27(12):119-123.JI Chunrong,ZOU Chen,FAN Ziang,LI Xinjian.Sap flow of Picea schrenkiana and its responses to metrological factors in the middle area of Tianshan Mountain,China[J].Journal of Arid Land Resources and Environment,2013,27(12):119-123.

[8] 白岩,朱高峰,张琨,马婷.敦煌葡萄液流特征及耗水分析[J].中国沙漠,2015,35(1):175-181.BAI Yan,ZHU Gaofeng,ZHANG Kun,MA Ting.Analysis of variation of sap flow velocity and water consumption of grapevine in the Nanhu oasis,Dunhuang,China[J].Journal of Desert Research,2015,35(1):175-181.

[9] 刘鑫,张金池,庄家尧,顾哲衍,韩诚,吴雁雯.杉木幼树树干液流影响因子及其对杉木林蒸腾量的贡献[J].水土保持通报,2014,34(6):73-78.LIU Xin,ZHANG Jinchi,ZHUANG Jiayao,GU Zheyan,HAN Cheng,WU Yanwen.Impact factors of sap flow of Chinese fir sapling and its contribution to the transpiration of Chinese fir forest[J].Bulletin of Soil and Water Conservation,2014,34(6):73-78.

[10] 刘奉觉,郑世锴,巨关升.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997,33(2):117-126.LIU Fengjue,ZHENG Shikai,JU Guansheng.A study on comparison of measuring water-consumption for transpiration in poplar[J].Scientia Silvae Sinicae,1997,33(2):117-126.

[11] 王力,王艳萍.黄土塬区苹果树干液流特征[J].农业机械学报,2013,44(10):152-158.WANG Li,WANG Yanping.Characteristics of stem sap flow of apple trees in Loess Tableland[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(10):152-158.

[12] 李波,郑思宇,魏新光,王铁良,孙君,葛东.东北寒区日光温室葡萄液流特征及其主要环境影响因子研究[J].农业工程学报,2019,35(4):185-193.LI Bo,ZHENG Siyu,WEI Xinguang,WANG Tieliang,SUN Jun,GE Dong.Study on sap flow characteristics of grape and its environment influencing factors in cold regions of northeastern China[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(4):185-193.

[13] 凡超,邱燕萍,李志强,李建光,张邦跃,袁沛元.荔枝树干液流速率与气象因子的关系[J].生态学报,2014,34(9):2401-2410.FAN Chao,QIU Yanping,LI Zhiqiang,LI Jianguang,ZHANG Bangyue,YUAN Peiyuan.Relationships between stem sap flow rate of litchi trees and meteorological parameters[J].Acta Ecologica Sinica,2014,34(9):2401-2410.

[14] 王云霓,曹恭祥,王彦辉,徐丽宏,刘永宏,王晓江.六盘山南侧不同坡位华北落叶松人工林树干液流特征及其环境影响因子[J].生态学杂志,2018,37(7):1932-1942.WANG Yunni,CAO Gongxiang,WANG Yanhui,XU Lihong,LIU Yonghong,WANG Xiaojiang.Sap flow characteristics of Larix principis-rupprechtii plantation and its impact factors in different slope locations at the south side of Liupan Mountains[J].Chinese Journal of Ecology,2018,37(7) :1932-1942.

[15] 黄雅茹,辛智鸣,罗红梅,罗凤敏,马迎宾,葛根巴图,李新乐,孙非,郝玉光.乌兰布和沙漠中国沙棘果实成熟期茎干液流规律及其与环境因子的关系[J].生态学杂志,2015,34(11):3125-3131.HUANG Yaru,XIN Zhiming,LUO Hongmei,LUO Fengmin,MA Yingbin,GE Genbatu,LI Xinle,SUN Fei,HAO Yuguang.Stem sap flow dynamics of Hippophae rhamnoides L.subsp. sinensis Rousi in relation to environmental factors in Ulan Buh Desert during fruit stage[J].Chinese Journal of Ecology,2015,34(11):3125-3131.

[16] 张晓艳,褚建民,孟平,姚增旺,王鹤松,李得禄,姜生秀.民勤绿洲荒漠过渡带梭梭[Haloxylon ammodendron(C.A.Mey)Bunge]树干液流特征及其对环境因子的响应[J].生态学报,2017,37(5):1525-1536.ZHANG Xiaoyan,CHU Jianmin,MENG Ping,YAO Zengwang,WANG Hesong,LI Delu,JIANG Shengxiu.The effect of environmental factors on stem sap flow characteristics of Haloxylon ammodendron(C.A.Mey.)Bunge in Minqin oasis-desert[J].Acta Ecologica Sinica,2017,37(5):1525-1536.

[17] 张建国,久米朋宣,大规恭一,山中典和,杜盛.黄土高原半干旱区辽东栎的树干液流动态[J].林业科学,2011,47(4):63-69.ZHANG Jianguo,KUME Tomonori,OTSUKI Kyoichi,YAMANAKA Norikazu,DU Sheng.Sap flow dynamics of dominant trees of Quercus liaotungensis forest in the Semiarid Loess Plateau Region[J].Scientia silvae sinicae,2011,47(4):63-69.

[18] 赵付勇,赵经华,付秋萍,洪明,马英杰.不同灌水定额对滴灌条件下核桃树茎流速率的影响[J].节水灌溉,2015(12):35-39.ZHAO Fuyong,ZHAO Jinghua,FU Qiuping,HONG Ming,MA Yingjie.Influence of different irrigation quotas on sap flow rate of walnut trees under drip irrigation[J].Water Saving Irrigation,2015(12):35-39.

[19] 赵天宇,关东海,苏里坦,时山良.环境因子对胡杨树干液流动态的影响[J].水土保持通报,2015,35(6):15-20.ZHAO Tianyu,GUAN Donghai,SU Litan,SHI Shanliang.Effects of environmental factors on trunk sap flow of Populus euphratica[J].Bulletin of Soil and Water Conservation,2015,35(6):15-20.

[20] 杨瑞,喻理飞,戴全厚.喀斯特区云南鼠刺树干液流及土壤水分动态[J].水土保持通报,2015,35(2):89-93.YANG Rui,YU Lifei,DAI Quanhou.Dynamics of soil moisture and sap flow of Itea Yunnanensis in karst region[J].Bulletin of Soil and Water Conservation,2015,35(2):89-93.

[21] 吴迪,彭熙,李安定,龙秀琴,李苇洁.水城县主要猕猴桃果园土壤养分分析及酸碱度改良方法探讨[J].贵州科学,2014,32(4):94-96.WU Di,PENG Xi,LI Anding,LONG Xiuqin,LI Weijie.Analysis on soil nutrients and discussion on improved methods of soil pH in kiwifruit orchards of Shuicheng county[J].Guizhou Science,2014,32(4):94-96.

[22] 蔡甲冰,许迪,刘钰,赵娜娜.冬小麦返青后作物腾发量的尺度效应及其转换研究[J].水利学报,2010,41(7):862-869.CAI Jiabing,XU Di,LIU Yu,ZHAO Nana.Scaling effects and transformation of crop evapotranspiration for winter wheat after reviving[J].Journal of Hydraulic Engineering,2010,41(7):862-869.

[23] 蔡甲冰,许迪,刘钰,张宝忠.冬小麦返青后腾发量时空尺度效应的通径分析[J].农业工程学报,2011,27(8):69-76.CAI Jiabing,XU Di,LIU Yu,ZHANG Baozhong.Path analysis on spatio-temporal scaling effect of crop evapotranspiration in growing seasons for winter wheat after reviving[J].Transactions of the Chinese Society of Agricultural Engineering,2011,27(8):69-76.

[24] 徐璐,李平衡,赵鑫,杨广,何新林.2 种典型荒漠植物多尺度蒸腾日变化特征及其尺度转换研究[J].石河子大学学报(自然科学版),2014,32(1):79-85.XU Lu,LI Pingheng,ZHAO Xin,YANG Guang,HE Xinlin.Study on diurnal change characteristics of transpiration in different scales and up-scaling of two typical desert plants[J].Journal of Shihezi University(Natural Science),2014,32(1):79-85.

[25] 池波,蔡体久,满秀玲,李奕.大兴安岭北部兴安落叶松树干液流规律及影响因子分析[J].北京林业大学学报,2013,35(4):21-26.CHI Bo,CAI Tijiu,MAN Xiuling,LI Yi.Effects of influencing factors on stem sap flow in Larix gmelinii in northern Da Hinggan Mountains,northeastern China[J].Journal of Beijing Forestry University,2013,35(4):21-26.

[26] 李少宁,陈波,鲁绍伟,潘青华,张玉平,王华.月尺度下杨树树干液流对环境因子的响应[J].西北林学院学报,2013,28(3):40-45.LI Shaoning,CHEN Bo,LU Shaowei,PAN Qinghua,ZHANG Yuping,WANG Hua.Response of environmental factors to poplar stem sap flow on a monthly basis[J].Journal of Northwest Forestry University,2013,28(3):40-45

[27] 杨广远,张涛,戴锋,赵明水,蒋文伟.天目山柳杉树干液流春秋季特征及影响因素分析[J].西北林学院学报,2013,28(2):8-14.YANG Guangyuan,ZHANG Tao,DAI Feng,ZHAO Mingshui,JIANG Wenwei.Characteristics of stem sap flow of Cryptomeria fortunei and relevant factor analysis in spring and autumn at Mount Tianmu[J].Journal of Northwest Forestry University,2013,28(2):8-14.

[28] 王文杰,孙伟,邱岭,祖元刚,刘伟.不同时间尺度下兴安落叶松树干液流密度与环境因子的关系[J].林业科学,2012,48(1):77-85.WANG Wenjie,SUN Wei,QIU Ling,ZU Yuangang,LIU Wei.Relations between stem sap flow density of Larix gmelinii and environmental factors under different temporal scale[J].Scientia Silvae Sinicae,2012,48(1):77-85.

[29] 高荣.渭北高原红富士苹果树蒸腾规律与水肥耦合研究[D].杨凌:西北农林科技大学,2008.GAO Rong.Research of Fuji apple tree transpiration and fertilizer coupled in Weibei Plateau[D].Yangling:Northwest A&F University,2008.

[30] 党宏忠,冯金超,王檬檬,陈帅,却晓娥.黄土高原苹果树各生育期需水特征研究[J].果树学报,2020,37(5):659-667.DANG Hongzhong,FENG Jinchao,WANG Mengmeng,CHEN Shuai,QUE Xiao’e.A study on water demand characteristics of apple trees in different growing stages in the Loess Plateau Area[J].Journal of Fruit Science,2020,37(5):659-667.

[31] 孟秦倩.黄土高原山地苹果园土壤水分消耗规律与果树生长响应[D].杨凌:西北农林科技大学,2011.MENG Qinqian.Soil moisture consumption pattern and growth response of hilly apple orchard in the Loess Plateau[D].Yangling:Northwest A&F University,2011.

[32] 徐利岗,苗正伟,杜历,鲍子云,王怀博,李金泽.干旱区枸杞树干液流变化特征及其影响因素[J].生态学报,2016,36(17):5519-5527.XU Ligang,MIAO Zhengwei,DU Li,BAO Ziyun,WANG Huaibo,LI Jinze.Analysis of variation in and factors influencing sap flow in stems of Lycium barbarum in an arid area[J].Acta Ecologica Sinica,2016,36(17):5519-5527.

[33] 叶开玉,莫权辉,蒋桥生,王发明,龚弘娟,刘平平,李洁维.红阳猕猴桃果实生长发育及主要营养物质动态变化[J].江苏农业科学,2020,48(4):127-131.YE Kaiyu,MO Quanhui,JIANG Qiaosheng,WANG Faming,GONG Hongjuan,LIU Pingping,LI Jiewei.The growth and development of red kiwifruit and the dynamic changes of main nutrients[J].Jiangsu Agricultural Sciences,2020,48(4):127-131.

[34] 邱利娜,刘学琦,景晓卫.红阳猕猴桃在达州的引种表现及栽培技术[J].四川农业科技,2017,56(4):22-23.QIU Lina,LIU Xueqi,JING Xiaowei.Introduction performance and cultivation techniques of Hongyang kiwifruit in Dazhou[J].Sichuan Agricultural Science and Technology,2017,56(4):22-23.

[35] 池再香,张锦,肖钧,吴丹,龚雪芹,李贵琼.红阳猕猴桃种植基地自动站温度对其生长季的影响[J].气象科学,2018,38(2):258-263.CHI Zaixiang,ZHANG Jin,Xiao Jun,WU Dan,GONG Xueqin,LI Guiqiong.Impact of base meteorological automatic station of temperature on Hongyang kiwifruit growing season[J].Journal of the Meteorological Sciences,2018,38(2):258-263.

[36] 吴丹,张锦,古书鸿,池再香.贵州水城县与四川苍溪县红阳猕猴桃种植的气候相似性分析[J].贵州气象,2015,39(3):35-38.WU Dan,ZHANG Jin,GU Shuhong,CHI Zaixiang.Analysis of the climate similarity of Hongyang kiwifruit cultivation in Shuicheng County,Guizhou and Cangxi County,Sichuan[J].Journal of Guizhou Meteorology,2015,39(3):35-38.

[37] 夏恒,王晓峰.水城红心猕猴桃的气候适应性分析[J].贵州气象,2013,37(1):34-36.XIA Heng,WANG Xiaofeng.Analysis on the climate adaptability of Shuicheng red kiwifruit[J].Journal of Guizhou Meteorology,2013,37(1):34-36.

[38] 潘迪,毕华兴,次仁曲西,王莉莉,高路博,许华森,鲍彪.晋西黄土区典型森林植被耗水规律与环境因子关系研究[J].北京林业大学学报,2013,35(4):16-20.PAN Di,BI Huaxing,CIREN Quxi,WANG Lili,GAO Lubo,XU Huasen,BAO Biao.Relationship between environmental factors and water consumption regularity of typical forest vegetation in loess region of western Shanxi Province,northern China[J].Journal of Beijing Forestry University,2013,35(4):16-20.

[39] 张璇,张会兰,王玉杰,王云琦,刘春霞,杨坪坪,潘声雷.缙云山典型树种树干液流日际变化特征及与气象因子关系[J].北京林业大学学报,2016,38(3):11-20.ZHANG Xuan,ZHANG Huilan,WANG Yujie,WANG Yunqi,LIU Chunxia,YANG Pingping,PAN Shenglei.Characteristics of daily sap flow for typical species in Jinyun Mountain of Chongqing in relation to meteorological factors[J].Journal of Beijing Forestry University,2016,38(3):11-20.

[40] 黄龙.半干旱区猕猴桃树滴灌耗水特性与灌溉制度试验研究[D].西安:西安理工大学,2017.HUANG Long.Experimental study on water consumption characteristics and irrigation schedule of kiwifruit trees drip irrigation in semi-arid region[D].Xi’an:Xi’an University of Technology,2017.

[41] 王昌.微灌猕猴桃生长特性与需水规律试验研究[D].西安理工大学,2018.WANG Chang.Experimental studies on growth characteristics and water requirement pattern of kiwifruit trees under micro-irrigation[D].Xi’an:Xi’an University of Technology,2018.

[42] 赵奎,丁国栋,原鹏飞,张进虎,孙毅,刘楠.盐池毛乌素沙地白榆树干液流研究[J].水土保持研究,2008,15(6):85-88.ZHAO Kui,DING Guodong,YUAN Pengfei,ZHANG Jinhu,SUN Yi,LIU Nan.A research on stem sap flow dynamics of Ulmus pumila in Mu Us Sandy Area,Yanchi county[J].Research on Soil and Water Conservation,2008,15(6):85-88.

[43] 刘温泉,潘存德.不同天气条件下‘库车白杏’树干液流变化规律及其与环境因子的关系[J].中国农学通报,2014,30(31):14-18.LIU Wenquan,PAN Cunde.Sap flow variation of Armeniaca vulgaris‘Kuchebaixing’under different weather conditions and its correlation with several environmental factors[J].Chinese Agricultural Science Bulletin,2014,30(31):14-18.

[44] 马长明,翟明普.干季核桃树干液流特征及其与气象因子的关系[J].林业科学研究,2007,20(6):883-886.MA Changming,ZHAI Mingpu.Stock sap flow characters of juglans regia and relationship with meteorological factors in dry season[J].Forest Research,2007,20(6):883-886.

[45] 严昌荣,ALEC Downey,韩兴国,陈灵芝.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究[J].生态学报,1999,19(6):793-797.YAN Changrong,ALEC Downey,HAN Xingguo,CHEN Lingzhi.A study on sap flow of Juglans mandshurica of growth season in deciduous broad-leaf forest Beijing Mountain area[J].Acta Ecologica Sinica,1999,19(6):793-797.

[46] 陈立欣,张志强,李湛东,张文娟,张晓放,董克宇,王国玉.大连4 种城市绿化乔木树种夜间液流活动特征[J].植物生态学报,2010,34(5):535-546.CHEN Lixin,ZHANG Zhiqiang,LI Zhandong,ZHANG Wenjuan,ZHANG Xiaofang,DONG Keyu,WANG Guoyu.Nocturnal sap flow of four urban greening tree species in Dalian,Liaoning Province,China[J].Chinese Journal of Plant Ecology,2010,34(5):535-546.

[47] TIE Q,HU H C,TIAN F Q,GUAN H D,LIN H.Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China[J].Agricultural and Forest Meteorology,2017,240:46-57.

[48] DU S,WANG Y L,KUME T,ZHANG J G,OTSUKI K,YAMANAKA N,LIU G B.Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China[J].Agricultural and Forest Meteorology,2011,151(1):1-10.

Characteristics of trunk SAP flow and its relationship with environmental factors during growth and development in Hongyang kiwifruit

WU Jiawei1,LI Weijie1*,YANG Rui2,WU Di1

(1Guizhou Institute of Mountain Resources,Guiyang 550001,Guizhou,China;2College of Forestry,Guizhou University,Guiyang 550025,Guizhou,China)

Abstract: 【Objective】At present,the situation of water shortage in China is becoming more and more serious,especially in the arid areas of northwest China.The lack of water resources has been considered as a serious obstacle to agricultural development.With the change of industrial structure,the planting area of fruit industry in China is increasing,but the irrational use of water resources leads to a sharp increase in water consumption.Therefore,how to make effective use of limited water resources and produce high-quality,stable and high-yield fruits with increasing the income of local farmers and promoting the effective circulation of ecological environment has become a scientific problem to be solved urgently.In view of the large spatial and temporal differences in rainfall in Miluo Town,Shuicheng County,Guizhou province,the water consumption and environmental factors of kiwifruit in different growth stages were measured and systematically analyzed.The water consumption of kiwifruit in different growth stages was discussed in order to provide scientific basis for water management and rational utilization of kiwifruit in this district.【Methods】The experiment was carried out from March 1 to August 31,2020.The flow rate of stem fluid of 5-year-old kiwifruit Hongyang was measured by thermal diffusion flow probe method,and the environmental factors were monitored synchronously by small meteorological stations.After selecting the representative sample wood,the compass was employed to determine the sample wood north direction,the dead skin at the diameter with breast height (1.3 m) was scraped off,and sodium hypochlorite was used to clean out the drill,which was fit to the sensor hole.The probe was inserted into it,paying attention to the depth of the probe,and plasticine was applied to seal the joints after insertion,and tools such as foam and tape were used to fix the probe.Finally,the outer layer was wrapped around the PVR shield and sealed with waterproof tape.The seal was coated with glass glue to prevent water from entering,which worked normally after connecting the power supply.Average data were calculated and stored for every 30 min.The measurement method was set for point continuous observation.【Results】Daily average water consumption at different growth stages was as follows: the fruit expansion period (3.02 kg) >fruit maturity period (2.94 kg) >flowering and fruit setting period(0.99 kg)>bud break and leaf expansion period(0.77 kg).The daily maximum average water consumption in fruit expansion period was 4 times more than that in bud break and leaf expansion period.It was worth noting that the daily water consumption of kiwifruit mainly showed a trend of“low-high-low”.The daily maximum average water consumption at the fruit enlargement growth stage was 4 times more than that at the bud break and leaf expansion stage,and notably,the daily water consumption of kiwifruit mainly showed a“low-high-low”trend.The water consumption of kiwifruit mainly occurred between 8∶00 and 16∶00,which represented“high in the day and low in the night”,and there was a less water consumption at night.In terms of the monthly scale,the water consumption of kiwifruit increased gradually from March to July,reaching the maximum in July,while slightly decreasing in August,and the overall trend was as follows:July(90.60 kg)>August(86.96 kg)>June (66.20 kg)>May (53.35 kg)>April (41.21 kg) >March (25.29 kg).The total water consumption at different growth stages was as follows: The fruit swell stage (326.33 kg) >the fruit maturing stage(88.13 kg) >the flowering and fruit-setting stage (24.71 kg) >the bud break and leaf expansion stage(18.36 kg),and the maximum water consumption at the fruit swell stage was 17.78 times more than that at the fruit maturing stage.There was a significant correlation between SAP flow rate and environmental factors at different growth stages of kiwifruit.In addition,the solar radiation,air temperature,wind speed,soil temperature and soil moisture were significantly and positively correlated with diurnal variation of SAP flow of kiwifruit at different growth stages,while negatively correlated with relative humidity.Furthermore,the diurnal variation trend of environmental factors such as solar radiation,air temperature,wind speed and soil temperature was similar to that of SAP flow rate of kiwifruit.Moreover,taking RN,VPD,VT and TS as independent variables and SAP flow rate as dependent variables,the multiple regression analysis was conducted,and the bud break and leaf expansion stage was obtained: F=60.985+0.055Rn+11.844VPD+1.043VT-3.119Ts (R2=0.918),the flowering and fruit-setting stage was F=-301.524+0.336Rn-77.366VPD+2.529VT+22.777Ts(R2=0.962),the fruit swell stage was F=643.830+0.124Rn+26.082VPD+1.683VT+29.093Ts (R2=0.968),and the fruit maturing stage was F=-1955.991-1.845Rn+175.061VPD+17.850VT+81.869Ts (R2=0.973).The coefficient of determination for the fit of the four factors was 0.973.It was worth noting that the four environmental factors of RN,VPD,VT and TS had a good explanation for the changes in SAP traffic.There were differences in SAP flow rate under different weather conditions during the prime period of kiwifruit.In addition,the daily variation of SAP flow was as follows: Sunny day >cloudy day >rainy day.The SAP flow rate of kiwifruit trunk showed a single or bimodal trend of“low-high-low”on cloudy days and sunny days,while it showed a multi-peak pattern on rainy days,which was mainly caused by the environmental factors that fluctuated greatly in rainy days.Furthermore,with Rn,VPD,VT and TS as independent variables and SAP flowrate as dependent variable,the multiple regression analysis was carried out.The fitting equation under sunny conditions was F=-943.776+0.260Rn+49.647VPD+1.7558VT+42.698Ts(R2=0.956),and that under overcast conditions was F=-476.655+3.643Rn+228.831VPD+0.566VT-1.854Ts(R2=0.674).The fitting determinants of sunny,cloudy and rainy days were 0.965,0.751 and 0.674,respectively.The fluctuation of environmental factors was the largest in rainy days,while the fitting determinants were the lowest.【Conclusion】According to the multiple relationships among water consumptions in different growth stages of kiwifruit,the water consumption ratio in different phenological stages was determined synthetically.Combined with soil moisture index,the corresponding water storage facilities were established,and the problem of uneven spatial and temporal distribution of rainfall was compensated.

Key words: Kiwifruit;Trunk SAP flow;Flow water consumption;Environmental factors

中图分类号:S663.4

文献标志码:A

文章编号:1009-9980(2022)03-0388-18

DOI:10.13925/j.cnki.gsxb.20210178

收稿日期:2021-05-21

接受日期:2021-11-02

基金项目:贵州省精品水果(猕猴桃)产业技术研发及服务能力建设(黔科合[2019]4004);贵州山地猕猴桃果园水肥一体化技术研究与示范(黔科合[2018]2339)

作者简介:吴佳伟,男,硕士,主要从事森林可持续经营研究。Tel:15885029473,E-mail:1311718565@qq.com

*通信作者Author for correspondence.Tel:13984116982,E-mail:lwj024333@163.com