35份果桑资源果实品质分析与综合评价

李勋兰,魏召新,彭芳芳,罗友进,韩国辉*

(重庆市农业科学院,重庆 401329)

摘 要:【目的】构建果桑果实品质综合评价体系,为筛选优良果桑资源提供依据。【方法】以35份果桑成熟果为试验材料,分析测定果实16项品质指标,采用主成分分析法、相关性分析及变异系数筛选出核心评价指标,基于13项品质指标利用因子分析法以及基于核心评价指标,利用层次分析法和灰色关联分析法构建果桑果实品质综合评价体系。【结果】不同资源材料的果实品质存在差异,其中A5单果质量,A4、B1和一串红和长果1号果实中可溶性固形物含量,B1总糖含量以及A3和A4果实中花色苷含量、总酚含量和总黄酮含量远高于其他材料;品质指标间普遍存在相关性;通过主成分分析、相关性分析和变异系数筛选出单果质量、色差L*、SSC、总酸含量、维生素C含量、花色苷含量为果桑果品核心评价指标;通过因子分析法和灰色关联分析法皆筛选出A3、A4、A5和B1为品质优良果桑资源。【结论】分别基于因子分析法和灰色关联分析法构建了果桑品质综合评价体系,为优良果桑资源筛选提供参考依据。

关键词:果桑;果实品质;核心指标;综合评价

果桑是以生产果实为主的桑树品种,其果实营养丰富,柔嫩多汁,美味可口,是卫生部首批药食两用农产品之一,深受广大消费者喜爱[1]。我国桑树种质资源丰富,但桑树种质资源的利用一直集中在叶用品种的创新方面。近十年,随着蚕桑产业的转型升级和果桑市场需求的扩大,果桑产业得到快速发展,种植面积和产量不断增加,但我国果桑产业种植结构和优质品种单一的问题相当突出。因此,基于丰富的桑树种质资源进行果用品种的创新对果桑产业的多元化和健康发展具有重要现实意义。种质资源鉴定和评价是种质资源有效利用的前提,重要性状表型评价鉴定一直是育种工作的重要组成。果实品质性状的评价是果桑种质资源的表型鉴定的重要内容,也是筛选优异种质材料的重要依据。

有关果桑果实品质性状评价已有较多报道,但仅涉及少数品种以及少数品质指标,不够系统和深入[2-4]。果实颜色是果桑分类和成熟度鉴定的重要依据,作为果桑果实外在品质重要指标之一,相关研究皆忽略颜色指标的重要性,未将其纳入评价指标中[5-8]。如何科学地评价果桑果实品质,仍是高效利用果桑种质资源研究中需要解决的问题之一[9]。核心评价指标的筛选和综合评价方法的应用是科学评价果实品质的关键问题。已有研究者初步构建了桑椹品质评价指标体系,但原始评价指标不够全面[10]

笔者在本研究中以35 份果桑资源组成较大样本量,以4 项颜色指标(L*a*b*c*)、4 项形态指标(单果质量、纵径、横径、果形指数)、4 项风味指标[可溶性固形物含量(soluble solids content,SSC)、总酸(total acidity,TA)、固酸比、总糖含量]以及4项功能指标(维生素C、花色苷、总黄酮、总酚含量)组成较为全面的原始指标体系,采用主成分分析法、相关性分析、变异系数和层次分析法进行果桑果实品质评价核心指标筛选及权重分配,并分别采用灰色关联分析(grey relational analysis,GRA)和因子分子法构建果实品质综合评价体系。笔者旨在建立果桑果实品质综合评价体系,筛选出优质果桑资源,为科学、高效地评价果桑果实品质提供理论依据。

1 材料和方法

1.1 材料

供试的35份果桑材料(表1)均采自重庆市农业科学院果桑种质资源圃,其中编号A1~A5 以及B1~B2 为收集的野生种质资源,其余为引进的主栽或地方特色品种。于2020年4—5月,每个品种选取10株,从树体四周的枝条中段选取大小一致、成熟度为85%~90%的健康果,采摘后立即放入冰盒中低温保存,于当天完成相关指标测定后于-80 ℃超低温保存备用。

表1 供试材料名称及来源
Table 1 Names and origins of mulberry accessions used in this study

1.2 方法

每个材料选取150 个果实用于分析,所有样品均设3 个重复。用电子天平测量,计算单果质量。用游标卡尺测量果实纵径和横径,并计算果形指数。采用Minolta CM-5分光测色仪测定果实色差L*(反映颜色的明亮度,L*<0表示偏黑,L*>0表示偏白)、a*(反映颜色的红绿程度,a>0 表示颜色偏红,a<0表示颜色偏绿)、b*(反映颜色的黄蓝程度,b>0表示颜色偏黄,b<0 表示颜色偏蓝)和c*(表示色彩饱和度)。SSC含量采用ATAGO手持糖度折光仪测定。TA含量采用GB/T 12456—2008《食品中总酸的测定》中的方法测定[11]。固酸比为SSC 与TA的比值。维生素C含量采用紫外分光光度法测定[12]。总糖含量采用蒽酮比色法测定[13]。总酚含量采用福林酚法测定[14]。总黄酮含量采用亚硝酸钠-硝酸铝法测定[15]。花色苷含量采用pH示差法测定[16]

1.3 数据处理

采用单因素方差分析进行差异显著性检验,计算样本间变异系数(coefficient of variation,CV),分析样本间的差异特征。基于主成分分析以提取因子所对应的方差贡献率为权重,参考文献[17]计算综合得分,实现基于因子分析法的果实品质综合评价。计算各指标间的Pearson相关系数,分析各指标的相关性,并结合旋转后因子载荷矩阵筛选出核心指标[18-19]。采用层次分析法对核心指标权重进行分配。以筛选出的核心指标为变量,并提取各指标最大值为参考,计算关联系数,结合层次分析法确定的指标权重,计算关联度,实现基于灰色关联分析法的果实品质综合评价[20-21]

2 结果与分析

2.1 果桑果实品质性状及差异分析

对35 份果桑资源果实主要品质指标进行测定(表2)。通过显著性差异分析可以看出,A4、A5、澳玉、大十、四季1号、四季2号、云果2号的单果质量、横径、纵径显著高于大多数材料,其中A5单果质量、横径值最高。长果1 号和长果3 号的果形指数显著高于其他材料。A3 和A4的L*值显著低于其他材料,说明A3 和A4 果实偏黑色。白玉王、白玉王2号、大白鹅和长果3号的L*a*b*c*值无显著差异,且L*值较高,a*值、b*值和c*值低,说明这5个材料果实颜色差异小且果实颜色偏白且淡。无核四季和云果1号的L*a*b*c*值无显著差异,台湾72C002和A19的L*a*b*c*值无显著差异,且台湾72C002、A19 与无核四季和云果1 号的a*b*c*值无显著差异,而前两者L*值低于后两者,说明这4个材料果实颜色差异小,台湾72C002和A19果色略暗于无核四季和云果1号。

表2 35 份果桑种质果实品质性状
Table 2 Quality parameters in 35 mulberry accessions

续表Continued Table

注:不同小写字母表示在p <0.05 差异显著。
Note:Different small letters indicate significant difference at p <0.05.

不同资源材料的内在果实品质存在差异。A4、B1、一串红和长果1号SSC最高,在15.6%~17.7%之间,且无显著性差异;A5、澳玉、北方红、大十、嘉陵30、勐简4号、苗栗1号、山里红、四季1号、四季2号、台湾72C002、台湾46C019、无核四季、无名2 号、一串红、云果1 号、云果2 号和A19 总酸含量高且无显著性差异,在1.03%~1.58%之间;白玉王2 号固酸比最高,达42.02,显著高于其他材料;云果2号维生素C 含量最高,达20.77 mg·100 g-1,显著高于其他材料;B1总糖含量显著高于其他材料,达13.91%。A2和A3的SSC、TA、固酸比皆无显著性差异,且SSC、总糖含量和固酸比较高,TA 较低,说明A2 和A3 味感差异小,皆偏甜且口感浓郁;苗栗1号、山里红、四季2号、台湾46C019、无名2号、云果2号、绿椹子和勐简4 号的SSC、TA、固酸比皆无显著性差异,且SSC、固酸比和总糖含量较低,TA 较高,说明苗栗1号、山里红、四季2 号、台湾46C019、无名2 号、云果2号、绿椹子和勐简4号味感差异小,相对于其他材料口感偏酸且淡。A4花色苷、总酚和总黄酮含量最高,分别为5.7、0.63和3.07 mg·g-1,显著高于其他材料。

2.2 果桑果实品质评价指标筛选

2.2.1 品质指标间的相关性分析 由表3 可知,功能指标花色苷、总酚和总黄酮含量互呈极显著正相关,颜色指标L*与花色苷、总酚和总黄酮含量皆呈极显著相关。风味指标SSC、总糖含量和固酸比互呈极显著正相关,TA 与总糖含量和固酸比呈极显著负相关。单果质量与纵径、横径呈极显著相关。颜色指标L*a*b*c*两两间皆呈极显著相关,其中L*a*b*间呈极显著负相关,a*b*c*两两之间呈极显著正相关。从相关性分析结果可以看出,16项品质指标间存在高度的相关性,可对高度相关的指标间进行筛选,简化评价指标体系。

2.2.2 果实品质指标的主成分分析 采用主成分分析法对16项品质指标进行降维处理(表4)。前5个因子累计方差贡献率达87.71%,保留了16 项品质指标的大部分信息。旋转后因子载荷矩阵反映了品质指标对各因子的影响程度,因子1 贡献率达35.70%,主要代表花色苷、总酚、总黄酮含量等功能性指标及色泽亮度指标,品质指标间相关性分析显示色泽L*值与功能性指标间呈极显著正相关,因子1可称为功能因子;因子2贡献率为20.87%,主要代表SSC、TA、固酸比、总糖等味觉指标,可称为风味因子;因子3 和因子4 贡献率分别为14.41%和9.28%,主要代表果形指数、单果质量、纵径、维生素C含量和横径,主要反映果实大小;因子5贡献率为7.44%,主要代表果实颜色的4 个指标,可称为颜色因子。

表4 旋转后因子载荷矩阵及贡献率
Table 4 Factor loading matrix and contribution rate after rotation

结合变异系数、主成分分析和相关性分析结果对核心评价指标进行筛选。功能因子的3个指标间皆呈极显著相关,其中花色苷变异系数最大且在因子1 中权重较高,因此可选择花色苷含量代表功能指标。风味因子中固酸比与其他指标皆呈极显著相关且在因子2中权重最高,但固酸比为导出指标,总糖含量虽然变异系数较高,但与TA 相关性较低,因此选择其SSC 和TA 代表风味指标。在反映果实大小指标中果形指数变异系数最高,但果形指数为导出指标,单果质量与纵径、横径皆呈显著相关,因此选择单果质量作为果实大小评价指标。另外,因子4中维生素C含量权重高且变异系数大,且维生素C含量作为功能指标之一,但与其他功能指标相关性较低,因此从因子4 中筛选出维生素C 含量作为评价指标。在颜色因子5 个指标中c*b*分别表示色彩饱和度和蓝色到黄色的变化,因此b*c*值并不能反映果桑果实所呈现的颜色,L*值与a*值分布代表红色到绿色变化和黑色到白色变化,与a*相比L*更能反映果桑果实所呈现的颜色,因此选择L*代表颜色指标。

2.3 层次分析法确定核心评价指标权重

将筛选的6项核心评价依据层次分析法结合行业专家经验,采用1~9标度法构建判断矩阵(表5~表6)。对矩阵一致性进行检验,判断矩阵一致性比率(consistent ratio,CR)均小于0.1,通过一致性检验,说明所划分权重有效。通过层次分析法最终确定SSC、TA、维生素C含量、花色苷含量、单果质量和L*共6 项核心评价指标权重分别为0.38、0.19、0.06、0.28、0.08和0.02。

表5 准则层评价指标判别矩阵及一致性检验
Table 5 Discriminant matrix and consistency test for evaluation index of rule layer

表6 指标层评价指标判别矩阵及一致性检验
Table 6 Discriminant matrix and consistency test for evaluation index of index layer

2.4 果桑果实品质综合评价

将所有指标直接用于综合评价显然不合理,因此剔除与果实商品性相关性不大的果形指数以及与果桑果实所呈颜色的相关性不大的颜色指标b*c*,选择其余13 项品质指标作为因子分析综合评价的指标体系。前4个因子累计方差贡献率达89.28%(省略旋转后因子载荷矩阵及贡献率),提取前4 个因子信息进行分析,其中因子1主要代表花色苷、总酚、总黄酮含量、L*a*;因子2 主要代表SSC、TA、固酸比和总糖含量;因子3 主要代表维生素C 含量和横径;因子4主要代表单果质量和纵径。提取前4因子所对应的方差贡献率为权重,对35份果桑材料完成基于因子分析法的果实品质综合评价。以6项核心评价指标作为灰色关联分析法的指标体系,结合层次分析法确定的指标权重,对35份果桑材料利用灰色关联分析法进行综合评价。

由表7可知,2种评价方法获得的综合排序差异小,排名前5的种质材料基本一致,且各种质材料所在排名区间也基本一致。A1、A3、A4、A5和B1在因子分析法评价结果中得分明显较高,A3、A4、A5、B1和云果2号在灰色关联分析法评价结果中与参考值关联度较高,其中A4在2种评价方法结果中得分和关联度值远高于其他材料。以上结果说明,2 种评价方法皆可筛选出果实品质优异的种质资源材料,其中A3、A4、A5和B1果实综合品质较高。

表7 35 份果桑种质果实品质综合评价结果
Table 7 Quality comprehensive score and ranking of the 35 mulberry accessions

3 讨论

种质资源是果桑种质创新的重要基础,资源评价是种质资源有效利用的前提,不同果桑种质间果实品质性状的差异性,是育种材料的选择与产品开发的重要参考依据[22]。研究结果显示,35 份果桑种质果实风味、功能性营养成分、果实大小及颜色均存在差异,其中A4、B1 和长果1 号的SSC 和总糖含量较大部分材料高且TA 低;A3 和A4 花色苷、总酚和总黄酮含量远高于其他材料;A5单果质量远高于其他材料,这些材料可作为提高果实甜度和浓郁度、功能性成分含量或大小的优良育种材料。果桑果实中主要色素是花青素,相关研究已证明花青素含量和pH 影响植物呈色[23-24]。在相关性分析结果中,颜色指标L*和功能指标、总糖含量、SSC等皆呈极显著相关,a*与TA、固酸比呈极显著相关,这与李[25]、葡萄[26]、蓝莓[27]等果实指标相关性分析结果一致。相关性分析结果说明,在以提高功能性营养成分和果实风味为目标的育种工作中,果实颜色可指导果桑育种者进行野外种质资源的针对性收集与利用。

因子分析法和灰色关联分析法是常用的果品评价方法[28-30]。因子分析法通过主成分分析将多个相关变量转化为少数相关性较小的综合指标,以各因子贡献率为权重计算综合得分,可有效针对有较多评价指标的数据集进行综合评价[31]。与因子分析法中采用客观赋权法不同,灰色关联分析法以理想性状为参照,可针对不同育种或生产目标进行指标赋权,使得评价更有针对性和实际意义[32]。笔者在本研究中以13 项果品指标和6 项核心评价指标为变量,分别基于因子分析法和灰色关联分析法进行综合评价,筛选出的优质果桑材料基本一致,2种方法相互验证了所建立的综合评价体系的有效性。通过采用主成分分析法、相关性分析和变异系数筛从16项果品指标中筛选出花色苷含量、SSC、TA含量、维生素C 含量、单果质量和色差L*共6 项核心评价指标,与乔宇等[10]筛选出的SSC、花色苷含量、TA 含量、还原糖含量4 项指标及赵珮等[8]筛选出的SSC、糖酸比、单果质量、花色苷含量、维生素C 含量和多酚含量6 项指标相比,笔者在本研究所筛选出的核心评价囊括了功能、风味、产量及颜色等果品评价4大方面,且指标间相关性小、重叠率低。灰色关联分析法评价结果也说明采用花色苷含量、SSC、TA 含量、维生素C含量、单果质量和色差L*作为果桑果实评价的核心指标可筛选出优质果桑材料,这为果桑大样本果品高效分析和评价提供了参考。除品质指标外,耐存性、抗病性、丰产性和适应性等也是优良种质重要的评价因子,在品质评价的基础上,进一步结合耐存性、抗病性、丰产性和适应性等进行全面或针对性评价,才能筛选出果桑产业发展适宜果桑优良品种。

4 结论

通过对35 份果桑材料果实品质综合分析得到结论如下:A3、A4、A5 和B1 为品质优良果桑资源,可作为提高果实甜度和浓郁度、功能性成分含量或大小的优良育种材料;花色苷含量、SSC、TA 含量、维生素C 含量、单果质量和色差L*可作为为果桑果实品质评价的核心指标;采用因子分析法和灰色关联分析法所建立的综合评价方法皆可筛选出优良果桑材料。

参考文献References:

[1] ERCISLI S,ORHAN E.Chemical composition of white (Morus alba),red (Morus rubra) and black (Morus nigra) mulberry fruits[J].Food Chemistry,2007,103(4):1380-1384.

[2] CHEN H,CHEN J,YANG H,CHEN W,GAO H,LU W.Variation in total anthocyanin,phenolic contents,antioxidant enzyme and antioxidant capacity among different mulberry (Morus sp.)cultivars in China[J].Scientia Horticulturae,2016,213:186-192.

[3] 何雪梅,孙健,梁贵秋,邱长玉,李杰民,李丽,李昌宝,盛金凤,刘国明,零东宁,唐雅园.广西地区13 个主栽桑品种的桑椹营养与药用品质综合评价[J].食品科学,2018,39(10):250-256.HE Xuemei,SUN Jian,LIANG Guiqiu,QIU Changyu,LI Jiemin,LI Li,LI Changbao,SHENG Jinfeng,LIU Guoming,LING Dongning,TANG Yayuan.Nutritional and medicinal quality of mulberry fruit from 13 main varieties grown in Guangxi[J].Food Science,2018,39(10):250-256.

[4] 宋志姣,樊金欣,李德焕,周艺垠,郭燕,蒋碧婷,杨丽莎,杨钧林,范国明.不同果桑品种加工品质评价[J].食品与发酵工业,2020,46(15):134-139.SONG Zhijiao,FAN Jinxin,LI Dehuan,ZHOU Yiyin,GUO Yan,JIANG Biting,YANG Lisha,YANG Junlin,FAN Guoming.Evaluation of processing qualities of different mulberry varieties[J].Food and Fermentation Industry,2020,46(15):134-139.

[5] 肖更生,王振江,唐翠明,刘学铭,罗国庆,吴福泉.桑椹成熟过程中主要色素类物质的动态变化[J].蚕业科学,2011,37(4):600-605.XIAO Gengsheng,WANG Zhenjiang,TANG Cuiming,LIU Xueming,LUO Guoqing,WU Fuquan.Dynamic variation of major pigmentary substances in mulberry fruit during maturation[J].Acta Sericdogica Sinica,2011,37(4):600-605.

[6] 李俊芳,马永昆,张荣,刘利,于怀龙,叶华,张海宁,李希.不同果桑品种成熟桑椹的游离氨基酸主成分分析和综合评价[J].食品科学,2016,37(14):132-137.LI Junfang,MA Yongkun,ZHANG Rong,LIU Li,YU Huailong,YE Hua,ZHANG Haining,LI Xi.Principal components analysis and comprehensive evaluation of free amino acids in ripe fruits of different mulberry varieties[J].Food Science,2016,37(14):132-137.

[7] 高扬,李树海,王占文,张晓玉,刘景超.不同品种桑椹成熟过程中品质及生物活性物质的变化[J].分子植物育种,2018,16(5):1677-1681.GAO Yang,LI Shuhai,WANG Zhanwen,ZHANG Xiaoyu,LIU Jingchao.Changes in quality and biologically active substances in different varieties of mulberry during maturation[J].Molecular Plant Breeding,2018,16(5):1677-1681.

[8] 赵珮,黄传书,唐小平,何佳洋,雷霆,刘艳,吴均.桑椹品质评价的主要指标及模型研究[J].蚕业科学,2020,46(3):295-305.ZHAO Pei,HUANG Chuanshu,TANG Xiaoping,HE Jiayang,LEI Ting,LIU Yan,WU Jun.Study on main indicators and model to evaluate mulberry fruit quality[J].Science of Sericulture,2020,46(3):295-305.

[9] 黄盖群,佟万红,桂仲争,危玲,曾益春,曾贞,殷浩,刘刚,郑继川,姚永权,李永远.不同果桑品种资源理化性状的主成分分析[J].中南林业科技大学学报,2017,37(11):19-23.HUANG Gaiqun,TONG Wanhong,GUI Zhongzheng,WEI Ling,ZENG Yichun,ZENG Zhen,YIN Hao,LIU Gang,ZHENG Jichuan,YAO Yongquan,LI Yongyuan.Principal component analysis for physicochemical characteristics of different fruit mulberry cultivars[J].Journal of Central South University of Forestry&Technology,2017,37(11):19-23.

[10] 乔宇,廖李,刘璐,李阳,于翠,吴继军,程薇,陈学玲.桑椹品质评价指标的主成分分析及12 个桑品种的桑椹品质综合评价[J].蚕业科学,2014,40(5):851-856.QIAO Yu,LIAO Li,LIU Lu,LI Yang,YU Cui,WU Jijun,CHENG Wei,CHEN Xueling.Principal component analysis of quality evaluation indexes of mulberry fruit and comprehensive assessment on fruit quality of twelve mulberry varieties[J].Acta Sericologica Sinica,2014,40(5):851-856.

[11] 国家质量监督检验检疫总局.食品中总酸的测定:GB/T 12456—2008[S].北京:中国标准出版社,2008.State General Administration of Quality Supervision,Inspection and Quarantine.Determination of total acid in food:GB/T 12456—2008[S].Beijing:China Standard Press,2008.

[12] 马宏飞,卢生有,韩秋菊,李薇.紫外分光光度法测定五种果蔬中维生素C的含量[J].化学与生物工程,2012,29 (8):92-94.MA Hongfei,LU Shengyou,HAN Qiuju,LI Wei.Determination of vitamin c content in five kinds of fruits and vegetables by UV spectrophotometry[J].Chemical and Biological Engineering,2012,29(8):92-94.

[13] 张宪政,陈凤玉,王荣富.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1994:144-151.ZHANG Xianzheng,CHEN Fengyu,WANG Rongfu.Experimental technology of plant physiology[M].Shenyang:Liaoning Science and Technology Press,1994:144-151.

[14] 李巨秀,王柏玉.福林-酚比色法测定桑椹中总多酚[J].食品科学,2009,30(18):292-295.LI Juxiu,WANG Baiyu.Folin-ciocalteu colorimetric determination of total polyphenols in mulberry fruits[J].Food Science,2009,30(18):292-295.

[15] JIANG Y,NIE W J.Chemical properties in fruits of mulberry species from the Xinjiang Province of China[J].Food Chemistry,2015,174:460-466.

[16] 杨兆艳.pH 示差法测定桑椹红色素中花青素含量的研究[J].食品科技,2007,32(4):201-203.YANG Zhaoyan.Anthocyanin content in mulberry red pigment by pH-differential spectrophotometry[J].Food Science and Technology,2007,32(4):201-203.

[17] 马庆华,李永红,梁丽松,李琴,王海,许元峰,孙玉波,王贵禧.冬枣优良单株果实品质的因子分析与综合评价[J].中国农业科学,2010,43(12):2491-2499.MA Qinghua,LI Yonghong,LIANG Lisong,LI Qin,WANG Hai,XU Yuanfeng,SUN Yubo,WANG Guixi.Factor analysis and synthetical evaluation of the fruit quality of Dongzao(Ziziphus jujuba Mill.‘Dongzao’) advanced selections[J].Chinese Agricultural Sciences,2010,43(12):2491-2499.

[18] 赵建华,述小英,李浩霞,郑慧文,尹跃,安巍,王亚军.不同果色枸杞鲜果品质性状分析及综合评价[J].中国农业科学,2017,50(12):2338-2348.ZHAO Jianhua,SHU Xiaoying,LI Haoxia,ZHENG Huiwen,YIN Yue,AN Wei,WANG Yajun.Analysis and comprehensive evaluation of the quality of wolfberry (Lycium L.) fresh fruits with different fruit colors[J].Chinese Agricultural Sciences,2017,50(12):2338-2348.

[19] 马文霞,倪玉洁,谢倩,何淑敏,叶清华,叶俊,陈清西.鲜食百香果果实品质综合评价模型的建立及应用[J].食品科学,2020,41(13):53-60.MA Wenxia,NI Yujie,XIE Qian,HE Shumin,YE Qinghua,YE Jun,CHEN Qingxi.Establishment and application of comprehensive evaluation model for quality of fresh passion fruit[J].Food Science,2020,41(13):53-60.

[20] 于洁,闫利军,冀晓婷,穆怀斌,米福贵,李鸿雁.苜蓿和扁蓿豆萌发期耐盐指标筛选及耐盐性综合评价[J].植物遗传资源学报,2017,18(3):449-460.YU Jie,YAN Lijun,JI Xiaoting,MU Huaibin,MI Fugui,LI Hongyan.Screening of salt tolerance indexes during germination period of alfalfa and lentil and comprehensive evaluation of salt tolerance[J].Journal of Plant Genetic Resources,2017,18(3):449-460.

[21] 王佳敏,刘敏,郭咏梅,杜方,王军娥.AHP 法和灰色关联法在观赏辣椒果实外观品质评价中的应用[J].山西农业大学学报(自然科学版),2019,39(1):73-78.WANG Jiamin,LIU Min,GUO Yongmei,DU Fang,WANG Jun’e..Application of the combined tactic of AHP and gray relation analysis in the evaluation of ornamental pepper fruit appearance quality[J].Journal of Shanxi Agricultural University(Natural Science Edition),2019,39(1):73-78.

[22] 唐翠明,罗国庆,吴福泉,杨琼,肖更生.关于果桑品种选育的思考[J].果树学报,2007,24(6):826-829.TANG Cuiming,LUO Guoqing,WU Fuquan,YANG Qiong,XIAO Gengsheng.Some ideas on fruit mulberry breeding[J].Journal of Fruit Science,2007,24(6):826-829.

[23] 刘学铭,唐翠明,罗国庆,肖更生,陈卫东.桑椹成熟期理化性状变化规律初探[J].蚕业科学,2003,29(2):203-205.LIU Xueming,TANG Cuiming,LUO Guoqing,XIAO Gengsheng,CHEN Weidong.Changes of physical and chemical prosperities of mulberry fruit during its ripe period[J].Acta Sericologica Sinica,2003,29(2):203-205.

[24] AVILIA-ROSTANT O,LENNON A M,UMAHARAN P.Spathe color variation in Anthurium andraeanum Hort.and its relationship to vacuolar pH[J].Hort Science,2010,45(12):1768-1772.

[25] 薛晓敏,韩雪平,王贵平,王金政.不同成熟度对李果实品质的影响[J].经济林研究,2020,38(3):26-36.XUE Xiaomin,HAN Xueping,WANG Guiping,WANG Jinzheng.Effects of different maturities on characteristics of plum fruit quality[J].Nonwood Forest Research,2020,38(3):26-36.

[26] 邓婷婷,肖亚冬,刘春泉,徐亚元,郑铁松,李大婧,宋江峰.不同品种冻干无核葡萄脆粒品质评价[J].食品工业科技,2020,41(2):298-306.DENG Tingting,XIAO Yadong,LIU Chunquan,XU Yayuan,ZHENG Tiesong,LI Dajing,SONG Jiangfeng.Quality evaluation of different varieties of freeze-dried seedless grape crisp[J].Food Industry Science and Technology,2020,41(2):298-306.

[27] 刘丙花,孙锐,王开芳,舒秀阁,孙蕾.不同蓝莓品种果实品质比较与综合评价[J].食品科学,2019,40(1):70-76.LIU Binghua,SUN Rui,WANG Kaifang,SHU Xiuge,SUN Lei.Comparison and comprehensive evaluation of fruit quality of different blueberry (Vaccinium spp.) varieties[J].Food Science,2019,40(1):70-76.

[28] EVANGELINA M B,LUIS E A,MARÍA E D,GABRIEL H V,GERARDO D L C.Performance profiling of Prunus persica L.Batsch collection and comprehensive association among fruit quality,agronomic and phenological traits[J].Scientia Horticulturae,2016,26(198):385-397.

[29] 李慧,魏天军.基于主成分和灰色关联度分析的鲜食枣果实品质评价[J].经济林研究,2021,39(1):60-67.LI Hui,WEI Tianjun.Evaluation of fruit quality of fresh-eating jujube based on principal component and gray correlation analysis[J].Nonwood Forest Research,2021,39(1):60-67.

[30] 温静,周兰英,蒲光兰.欧李品种主要经济性状的灰色关联分析[J].湖南农业大学学报(自然科学版),2019,45 (4):368-372.WEN Jing,ZHOU Lanying,PU Guanglan.Grey correlation analysis of main economic characters of Cerasus humilis[J].Journal of Hunan Agricultural University(Natural Science Edition),2019,45(4):368-372.

[31] 王佳豪,段雅倩,乜兰春,宋立彦,赵文圣,方思雨,赵佳腾.‘羊角脆’类甜瓜果实品质因子分析及综合评价[J].中国农业科学,2019,52(24):4582-4591.WANG Jiahao,DUAN Yaqian,NIE Lanchun,SONG Liyan,ZHAO Wensheng,FANG Siyu,ZHAO Jiateng.Factor analysis and comprehensive evaluation of the fruit quality of‘Yangjiaocui’melons[J].Scientia Agricultura Sinica,2019,52(24):4582-4591.

[32] SHI S Y,CHEN D L,FU J X,LIU L Q,WEI Y Z,SHU B,LI W C,LIANG Q Z,LIU C J,LIU C M.Comprehensive evaluation of fruit quality traits in longan‘Fengliduo’בDawuyuan’sexual progenies[J].Scientia Horticulturae,2015,192:54-59.

Fruit quality analysis and comprehensive evaluation of 35 mulberry accessions

LI Xunlan,WEI Zhaoxin,PENG Fangfang,LUO Youjin,HAN Guohui*

(Chongqing Academy of Agricultural Sciences,Chongqing 401329,China)

Abstract: 【Objective】The evaluation of fruit quality traits is the most important part of phenotypic identification of mulberry germplasm resources,and it is also an important basis for screening excellent germplasm materials.How to scientifically evaluate the fruit quality of mulberry is still one of the problems that need to be solved in the research of efficient utilization of mulberry germplasm resources.The aim of this study was to establish reasonable comprehensive evaluation methods for screening genotypes with excellent fruit quality.【Methods】A total of 16 quality indicators including the fruit weight,vertical and horizontal lengths,fruit shape index,color values(L*,a*,b*,c*),soluble solids,titratable acid,solid-acid ratio,vitamin C(Vc),and the contents of anthocyanins,total flavonoids,total phenols and total sugars were obtained from 35 mulberry accessions.One-way analysis of variance and Parson correlation coefficient were used to analyze the significance and correlations among the measurement results.Principal component analysis,correlation analysis and coefficient of variation (CV) were applied to screen out the core evaluation indicators.The analytic hierarchy process was applied to assign weights of core indicators.Thirteen quality indicators were chosen to evaluate the fruit quality of the 35 fruit mulberry accessions by the factor analysis,and the core evaluation indexes were chosen to comprehensively evaluate the fruit quality via grey relational analysis.【Results】There were significant differences in fruit quality among accessions.The single fruit weight of A5 was the highest,which was 3.63 g.The content of soluble solids in fruits of A4,B1,Yichuanhong,and Changguo No.1 were the highest,ranging from 15.6%to 17.7%.The content of total sugar in fruit of B1 was 24.64 mg·g-1,which was significantly higher than the other accessions.The contents of anthocyanins,total phenols and total flavonoids in fruits of A3 and A4,were much higher than the other accessions.The result of correlation analysis showed that there were extremely significant correlations among flavor indexes,functional indexes,morphological indexes,and color indexes,and these highly relevant indicators could be selected to simplify the evaluation index system.By principal component analysis,the 16 evaluation indicators were reduced into 5 factors,which represented the functional components,flavor,fruit size,Vc and color of the fruit.Based on the coefficient of variation,principal component analysis and correlation analysis results,6 core evaluation indicators were chosen from the 5 factors,which respectively were single fruit weight,color L*,soluble solids,total acid,Vc and anthocyanins.By the analytic hierarchy process,the weights of single fruit weight,color L*,soluble solids,total acid,Vc and anthocyanins were finally determined to be 0.02,0.08,0.38,0.19,0.28 and 0.06,respectively.It was obviously unreasonable to directly use all the indicators for comprehensive evaluation.Therefore,the fruit shape index that had little correlation with the commercial nature and the color index b*and c*with little correlation with the color of the mulberry fruit were eliminated,and the remaining 13 were selected as the index system for comprehensive evaluation via factor analysis.Based on the factor analysis,A1,A3,A4,A5,and B1 got the highest scores,which meant that the fruit quality of A1,A3,A4,A5,and B1 were the best in the 35 mulberry materials.Six core evaluation indicators were used for the indicator system,and the weights determined by the analytic hierarchy process were applied in grey relational analysis,results of which showed that the A3,A4,A5,B1 and Yunguo No.2 were highly correlated with the reference value,indicating that the fruit quality of A3,A4,A5,B1 and Yunguo No.2 were the best in the 35 mulberry materials.The above results indicated that both evaluation methods could screen out germplasm materials with excellent fruit quality,and A3,A4,A5 and B1 had the highest comprehensive fruit quality.【Conclusion】The comprehensive analysis of the fruit quality of 35 mulberry materials showed that accessions A3,A4,A5 and B1 are high-quality mulberry resources,which can be used for breeding cultivars with higher sweetness and higher contents of functional components or larger fruit size.Single fruit weight,color L*,soluble solids,total acid,Vc and anthocyanins can be used as the core indicators for fruit mulberry quality evaluation.The comprehensive evaluation methods based on factor analysis and grey correlation analysis can be used to screen good mulberry materials.

Key words: Mulberry(Morus L.);Fruit quality;Core index;Comprehensive evaluation

中图分类号:S663.2

文献标志码:A

文章编号:1009-9980(2022)03-0332-11

DOI:10.13925/j.cnki.gsxb.20210327

收稿日期:2021-07-09

接受日期:2021-11-29

基金项目:重庆市科研机构绩效激励引导专项(cstc2018jxjl0118、cstc2019jxjl80012);重庆市农业科学院青年创新团队项目(NKY-2019QC08);重庆市农发资金-良种创新重大项目(NKY-2016AA002);重庆市特色水果产业技术体系(2020(3)03)

作者简介:李勋兰,女,助理研究员,硕士,研究方向为果树栽培与信息化。E-mail:lixunlan2009@126.com

*通信作者Author for correspondence.E-mail:hghui2007@126.com