灵武长枣(Zizyphus jujube Mill.‘Lingwuchangzao’)属鼠李科枣属,是宁夏特色的优良鲜食枣类品种,果实色艳、肉厚、质脆,酸甜适口,风味独特,富含维生素C、氨基酸和矿物质等营养物质,兼具药食同源特性[1-2]。灵武长枣采收后在常温条件下极易失水、软化,果肉组织发生褐变、酒化,营养下降,失去食用价值和商品价值。明确灵武长枣采后果实品质劣变的发生规律及主要原因,对于开发有效的保鲜技术,保障灵武长枣产业的健康发展具有重要意义。
采后软化与果肉褐变是鲜枣保鲜中存在的主要问题,其发生机制及调控技术一直是鲜枣保鲜研究的重要方向。前人研究发现鲜枣果肉软化与果实中细胞壁组分的变化及细胞壁降解酶活性密切相关[3-4],也与淀粉降解及淀粉酶活性上升有关[5]。酚类物质在多酚氧化酶作用下变为褐色的醌类物质影响着枣果肉的褐变[4],采后果实内乙醇积累引起的酒化现象也受到学者的关注和研究[6-7]。现阶段围绕灵武长枣保鲜技术研究主要有涂膜保鲜[8-9]、气调保鲜[10-11]、不同贮藏温度保鲜[12-13]等。1-甲基环丙烯(1-methylcyclopropene,1- MCP)是一种有效的乙烯受体抑制剂,可以显著抑制乙烯诱导的果蔬后熟与衰老,延缓果实软化,有效延长果实贮藏期[14],在李[15]、甜瓜[16]、苹果[17]、桃[18]、梨[19]、杧果[20]等水果中表现出很好的保鲜效果。在灵武长枣和其他鲜枣中也证实1-MCP 可以有效维持枣果实的贮藏品质[9,21-22]。然而,研究多是将不同处理对不同品质的影响进行了描述性分析,引起灵武长枣采后劣变的关键物质及之间的有机联系尚不清楚。
通径分析可以将自变量与因变量之间的相关性分解为直接影响和间接影响,进而明确自变量对因变量的直接重要性和间接重要性[23]。近年来已经在采后保鲜领域用于分析影响贮藏特性的主要指标因子以及明确不同保鲜处理的作用机制。孙志栋等[24-25]利用多元回归和通径分析方法分别研究了采前喷施纳米钛和N-α-月桂酸-L-精氨酸乙酯盐酸盐对水果贮藏品质的影响,明确还原糖含量是影响杨梅冷藏期间好果率的最大直接作用因子,可溶性固形物含量主要通过还原糖的积累对杨梅好果率产生较大的间接作用,明确了·OH清除率是影响蓝莓冷藏好果率的决策因子,硬度通过·OH清除率对蓝莓好果率产生较大的间接作用。胡花丽等[26]以总叶绿素为因变量,通过通径分析明确DPPH(1,1-diphenyl-2-picrylhydrazyl)清除率通过自身直接作用和叶酸、抗坏血酸及·OH清除率的间接作用来影响甘蓝的叶绿素,推测1-MCP对采后贮藏特性的影响主要与维持抗氧化能力有关。
为了明确1-MCP 和贮藏温度对灵武长枣贮藏品质的影响,探究影响灵武长枣果肉褐变和软化的主要因子及其作用,采用1-MCP对灵武长枣进行熏蒸处理,之后分别在室温及冷藏条件进行贮藏,测定贮藏过程中果肉硬度、褐变度及其他相关指标的变化情况,通过相关性分析、逐步回归和通径分析方法,揭示不同处理的灵武长枣果实硬度、褐变度与其他指标之间的关系和相互作用,进而为开发合适的采后调控技术提供理论依据。
灵武长枣采自宁夏灵武大泉林场,选择成熟度为果面2/3转红的果实,采收2 h内运回实验室,挑选无机械损伤、无虫害、大小一致的果实为试验材料。
在室温条件(25±1 ℃)下将灵武长枣置于密封箱内进行密闭熏蒸,处理时间12 h,浓度(φ)为0(空气,对照组CK)和1.0 μL · L- 1 的1-MCP(MCP组)[9,21]。处理后的果实每300 g用聚乙烯袋(0.02 mm厚)进行分装,并分为2组,一组放置于(25±1)℃室温条件贮藏(RT 组),一组放置于(0±0.5)℃冷藏(CT 组)。每处理3 次重复,每个重复用果6 kg。室温组在0、4、7、10 d 取样,冷藏组在0、8、15、22、29、37、45、56、71 d 取样,每个重复每次随机取样15 个果实进行指标测定,当该组好果率为0 时结束贮藏。
1.3.1 果肉硬度测定 灵武长枣果实中部两侧去皮,采用质构仪在去皮部位测定果肉硬度,每个果实测定2个点。探头直径为2 mm,测试速度1 mm·s-1,下压深度5 mm,以读取的最大峰值除以探头接触面积为硬度值,单位为kg·cm-2。
1.3.2 果肉褐变度测定 果肉褐变度参考Cernîşev[27]的方法,以果肉提取液在420 nm 处的吸光值为评价指标。
1.3.3 细胞壁果胶多糖提取与含量测定 参考Liu等[28]的方法,分步提取水溶性果胶(water soluble pectin,WSP)、螯合性果胶(chelate soluble pectin,CSP)、碳酸钠溶解性果胶(sodium carbonate soluble pectin,SSP)。果胶含量测定方法使用间羟基联苯比色法,测定524 nm处吸光值。以半乳糖醛酸为标准品,结果表示为每100 g果肉中所含的半乳糖醛酸含量(mg·100 g-1)。
1.3.4 可溶性糖组成及含量分析 可溶性糖组分的测定参考李佳秀等[29]的方法,利用HPLC 方法进行测定,色谱柱为Sugar-pak1(6.5×300 mm,美国Waters 公司),流动相为50 mg·L-1 EDTA 二钠钙溶液,流速0.5 mL·min-1,柱温80 ℃,进样体积10 μL,外标法定量。
1.3.5 果肉叶绿素含量 叶绿素含量测定参考《NY/T 3082—2017水果、蔬菜及其制品中叶绿素含量的测定》,利用分光光度计法进行测定。
1.3.6 总酚含量与DPPH清除力测定 参考胡花丽等[26]的方法对枣果肉总酚进行提取,Folin-Ciocalteu法进行含量测定,以没食子酸为标准品,结果表示为mg·100 g-1。以总酚提取液测定DPPH清除力,结果以每100 g鲜样中所含Vc当量(mg·100 g-1)表示。
1.4.1 仪器 PAL-1迷你数显糖度计:日本ATAGO公司;TA-XT Plus 质构仪:英国Stable Micro System公司;5810R 台式高速冷冻离心机:德国Eppendorf公司;Jena 50 紫外可见分光光度计:德国耶拿分析仪器股份公司;Waters 1525 高效液相色谱仪(2414色差检测器):美国Waters公司。
1.4.2 试剂 1-MCP(纯度0.14%):美国Smart FreshTM 公司;蔗糖(纯度≥99%)、葡萄糖(纯度≥99.5%)、果糖(纯度≥99%)、山梨醇(纯度≥99%)、半乳糖醛酸(纯度≥97%)、没食子酸(纯度≥98%)、抗坏血酸(纯度≥99%)标准品:美国Sigma公司;间羟基联苯(m-hydroxybiphenyl)、2,2-联苯基-1-苦基肼基(2,2-Diphenyl-1-picrylhydrazyl,DPPH):美国Sigma公司;其余试剂为国产分析纯。
采用Excel 2003 软件进行数据统计并作图,数据结果表示为平均值±标准差;利用SAS 9.2软件进行差异显著性分析(Duncan’s multiple range test),p <0.05 表示差异显著。利用SPSS13.0 考察各指标之间的相关性并进行多元回归分析和通径分析。分别以灵武长枣果肉硬度和褐变度为因变量,以WSP、CSP、SSP、叶绿素a、叶绿素b、蔗糖、葡萄糖、果糖、总酚含量以及DPPH清除力为自变量,开展逐步多元回归分析。对入选多元回归的自变量因子,作进一步的通径分析,计算直接通径系数与间接通径系数,确定各自变量对因变量贡献大小的主次顺序[23,25]。计算果肉硬度与褐变度的决策系数(=2×相关系数×直接作用系数-直接作用系数2),通过计算各自变量对因变量作用的决策系数值,确定影响因变量的主要决策变量(决策系数最大正值)[25,30]。
如图1-A 所示,室温条件下灵武长枣贮藏时间明显短于低温冷藏条件,室温组果实在10 d 时均发生腐烂变质,结束贮藏。低温冷藏条件下对照组灵武长枣贮藏时间为56 d,而1-MCP处理将灵武长枣贮藏时间延长至71 d。在整个贮藏过程中,低温冷藏条件下1-MCP 处理的灵武长枣硬度值均高于对照组,在15 d 和37 d 时达到显著水平,表明1-MCP可以延缓灵武长枣果肉软化。而在室温贮藏条件下,1-MCP处理与对照组的果肉硬度间不存在显著性差异。室温和低温条件下灵武长枣在贮藏过程中,随着贮藏时间的延长果肉颜色由绿转为灰白色最终变为褐色并呈糖渍化。通过对灵武长枣果肉组织的A420值进行测定(图1-B),发现随着贮藏时间的延长,A420 值逐渐增加。除室温组10 d 时外,在室温与冷藏条件下1-MCP处理的枣果A420值均低于对照组,表明贮藏过程灵武长枣褐变程度增加,而1-MCP可以延缓褐变的发生。
图1 灵武长枣贮藏过程果肉硬度和褐变度的变化
Fig.1 Changes in flesh firmness and browning degree of Lingwuchangzao fruit during storage
采后果实质地软化伴随着细胞壁多糖的降解和解聚,图2为贮藏过程中灵武长枣果肉中3种细胞壁果胶物质含量的变化情况,从结果看出,WSP 和CSP 随着贮藏时间的延长整体呈增加的趋势,而SSP 在贮藏过程中快速减少,表明贮藏过程果肉细胞壁的碳酸钠溶解性果胶发生降解,转变为水溶性和螯合性果胶。常温组中1-MCP 处理与对照之间的CSP 和SSP 含量均不存在明显差异。而在低温组,1-MCP处理的灵武长枣CSP含量在贮藏期均低于对照组,在15、22 和56 d 达到显著水平(p <0.05),SSP 含量在贮藏8 d 以及45 d、56 d 时显著高于对照组,并且在15~29 d延缓了WSP含量的增加,将WSP 的峰值出现时间推迟至37 d。1-MCP 可以抑制低温条件下灵武长枣SSP 的降解以及WSP 和CSP的增加。
图2 灵武长枣贮藏过程果肉细胞壁果胶含量的变化
Fig.2 Changes in contents of cell wall pectins of Lingwuchangzao fruit during storage
如图3 所示为贮藏过程中灵武长枣蔗糖、葡萄糖和果糖组分的变化情况,从图中可以直观看出,鲜样中的蔗糖含量(w,后同)(18.53 g·100 g-1)明显高于葡萄糖(4.86 g·100 g-1)和果糖(5.25 g·100 g-1)。而随着贮藏时间的延长,枣果中蔗糖含量逐渐降低,葡萄糖和果糖含量逐渐升高。冷藏条件下贮藏56~71 d 时,葡萄糖含量(11.81~15.52 g·100 g-1)和果糖含量(12.64~16.73 g·100 g-1)显著高于蔗糖含量(2.61~9.02 g·100 g-1)。1-MCP 处理的枣果在低温贮藏(CT组)15~29 d以及56 d时的蔗糖含量高于对照组(p <0.05),并且延缓了45 d 之后的果糖含量的增加,表明1-MCP可以抑制低温条件灵武长枣糖代谢进程。
图3 灵武长枣贮藏过程可溶性糖含量的变化
Fig.3 Changes in contents of soluble sugars of Lingwuchangzao fruit during storage
叶绿素降解与果蔬的褪绿转黄关系密切。如图4所示,常温贮藏条件下,灵武长枣果肉叶绿素在采后快速降解,叶绿素a(图4-A)、叶绿素b(图4-B)和总叶绿素(图4-C)含量呈现明显的下降趋势,而1-MCP 在7 d 的叶绿素a 含量和总叶绿素含量明显高于对照组(p <0.05),表明1-MCP 可以延缓室温贮藏枣果中叶绿素的降解。冷藏条件下,叶绿素含量与室温组的趋势有所不同,在前期逐渐下降而在贮藏45 d后略有回升。贮藏后期灵武长枣叶绿素含量的回升一方面可能是冷藏条件下果实贮藏时间长、后期果实失水造成的,另一方面由于贮藏后期果实发生褐变、影响吸光值的测定结果。而1-MCP显著抑制了低温贮藏22 d时叶绿素a、叶绿素b和总叶绿素含量的减少,延缓贮藏29 d 后叶绿素b 含量的增加。
图4 灵武长枣贮藏过程果肉叶绿素含量的变化
Fig.4 Changes in chlorophyll contents of Lingwuchangzao fruit during storage
多酚类物质在多酚氧化酶作用下的酶促褐变,是引起果肉褐变的一个重要因素,抗氧化能力是反映果实采后衰老进程的重要指标。从图5 可以看出,室温和冷藏条件下总酚含量和DPPH 清除力均在贮藏前期略有上升之后下降。灵武长枣采收时总酚含量为296.17 mg·100 g-1,室温组贮藏过程中对照组果实总酚含量始终低于1-MCP 组。低温冷藏条件下灵武长枣贮藏时间长,总酚含量明显减少,贮藏末期(56、71 d)对照组和1-MCP 处理组果实中总酚含量分别降至163.77 mg · 100 g-1 和173.94 mg·100 g-1。贮藏56 d时,1-MCP处理的灵武长枣总酚含量显著高于对照组(p <0.05)。室温组2 个处理组的DPPH 清除力不存在显著性差异,而在低温条件贮藏15 d 后(除22 d 时外),1-MCP 处理组的DPPH清除力均显著高于对照组(p <0.05),表明1-MCP 可以有效延缓低温条件下灵武长枣抗氧化能力的降低。
图5 灵武长枣贮藏过程总酚含量和DPPH 清除力的变化
Fig.5 Changes in total phenol contents and DPPH scavenging power of Lingwuchangzao fruit during storage
不同温度与1-MCP 处理下,灵武长枣果肉硬度、褐变度与相关指标之间的相关性分析结果如表1所示。从结果看出,室温贮藏条件下,果实硬度与CSP、葡萄糖、果糖含量呈显著负相关,与SSP、叶绿素a、叶绿素b、蔗糖含量呈显著正相关(p <0.05);果实褐变度与叶绿素a、叶绿素b和蔗糖含量呈现极显著负相关,与葡萄糖、果糖含量呈正相关(p <0.01)。而在低温贮藏条件下,果实硬度与3 种果胶含量均呈现出显著相关性,并且在CT-MCP组,硬度与CSP 和WSP 含量的相关性要明显高于SSP。但低温贮藏条件下对照组和1-MCP组果实硬度与3种果胶的相关系数均小于硬度与可溶性糖含量及总酚含量的相关系数。低温贮藏条件下,果实的褐变度除了与叶绿素和可溶性糖含量有关外,与总酚含量及DPPH 清除力也表现出极显著的负相关关系(p <0.01)。低温条件下长时间的贮藏,灵武长枣果实酚类物质降解严重,体内抗氧化系统失衡,也逐渐成为果实褐变发生的原因。
表1 灵武长枣贮藏过程中品质指标相关性分析
Table 1 Correlation analysis between quality indexes of Lingwuchangzao stored at different conditions
注:CT-CK.对照冷藏组,CT-MCP.1-MCP 处理冷藏组,RT-CK.对照室温组,RT-MCP.1-MCP 处理室温组,下同。**,*分别表示在0.01,0.05水平存在显著相关性。
Note: CT-CK. control group at cold temperature, CT-MCP. 1-MCP treatment group at cold temperature, RT-CK. control group at room temperature,RT-MCP.1-MCP treatment group at room temperature,the same below.*means significant at p<0.05,**means significant at p<0.01.
处理Treatment DPPH清除力DPPH scavenging power 0.354-0.203-0.037 0.410 0.846**-0.748**0.777**-0.741**指标Indicator WSP CSP SSP 蔗糖Sucrose葡萄糖Glucose果糖Fructose RT-CK RT-MCP CT-CK CT-MCP硬度Firmness褐变度Browning degree硬度Firmness褐变度Browning degree硬度Firmness褐变度Browning degree硬度Firmness褐变度Browning degree-0.549 0.363-0.439 0.652*-0.412*0.559**-0.716**0.784**-0.717**0.666*-0.593*0.795**-0.735**0.682**-0.719**0.737**0.730**-0.707*0.716**-0.935**0.719**-0.642**0.482*-0.462*叶绿素a Chloro phyll a 0.817**-0.934**0.603*-0.762**0.617**-0.559**0.627**-0.629**叶绿素b Chloro phyll b 0.773**-0.752**0.849**-0.840**0.666**-0.577**0.547**-0.518**0.801**-0.862**0.722**-0.836**0.803**-0.753**0.912**-0.894**-0.838**0.936**-0.840**0.791**-0.835**0.832**-0.784**0.870**-0.875**0.951**-0.824**0.854**-0.841**0.830**-0.799**0.860**总酚Total phenols 0.341-0.220-0.214-0.126 0.889**-0.820**0.903**-0.882**
相关性分析并不能具体地阐明各相关变量对因变量的直接作用以及不同变量间的间接作用。通过对灵武长枣果实硬度相关的指标进行多元回归与通径分析,可以直观地看出影响果肉硬度的主要指标及各指标的直接与间接作用系数,结果如表2和表3所示。
表2 灵武长枣果肉硬度(Y)多元回归方程与决策系数
Table 2 Multiple stepwise regression equations and decision coefficients of Lingwuchangzao fruit firmness
注:CT-CK 组中X1,X2,X3,X4 分别表示总酚、叶绿素b、果糖含量和DPPH 清除力;CT-MCP 组中X1,X2 分别表示蔗糖和叶绿素b 含量;RTCK 组中X1,X2 分别表示果糖和WSP 含量;RT-MCP 组中X1 表示叶绿素b 含量。
Note: CT-CK group. X1. total phenol, X2. chlorophyll b, X3. fructose, X4. DPPH scavenging power; CT-MCP group. X1. sucrose, X2. chlorophyll b;RT-CK group.X1.fructose,X2.WSP;RT-MCP group.X1.chlorophyll b.
处理Treatment CT-CK CT-MCP RT-CK RT-MCP R2P e 0.144 0.253 0.219 0.388多元回归方程Multiple regression equation Y=0.424+0.026 X1+33.858 X2-0.443 X3+0.832 X4 Y=-0.624+0.765 X1+15.678 X2 Y=33.274-1.199 X1-0.050 X2 Y=8.263+36.521 X1决策因子Decision factor总酚Total phenol蔗糖Sucrose果糖Fructose叶绿素b Chlorophyll b决策系数Decision coefficient 0.426 0.824 0.759 0.721 0.979 0.936 0.952 0.849 0.041 0.007 0.005 0.000
表3 不同处理组灵武长枣果肉硬度与品质指标的通径分析
Table 3 Path analysis of flesh firmness and fruit quality indexes of Lingwuchangza in different treatment groups
注:X1,X2,X3,X4,同表2。
Note:X1,X2,X3,X4,same as table 2.
处理Treatment CT-CK因子Factor相关系数Correlation coefficient 0.889 0.666-0.841 0.846 0.912 0.547-0.875-0.549 0.849直接作用Direct effect 0.285 0.375-0.308 0.234 0.824 0.229-0.796-0.384 0.849间接作用Indirect effect→X1→X2 0.130 X1 X2 X3 X4 X1 X2 X1 X2 X1 0.099-0.247 0.252→X3 0.267 0.101→X4 0.207 0.091-0.163-0.123 0.146 0.088 0.214 CT-MCP 0.318 RT-CK -0.079-0.165 RT-MCP
由表2 可知,灵武长枣果肉硬度与品质指标间的多元回归方程均通过了显著性检验(R2 ≥0.849,p ≤0.041)。剩余因子的通径系数,可表示其他因子及实验误差的影响[23],除室温1-MCP 组(RT-MCP)外,其他3个处理组多元回归模型的剩余因子较小,说明模型误差小且影响硬度的主要因素均已考虑在内。冷藏对照组(CT-CK)与硬度相关的有4个指标(总酚、叶绿素b、果糖含量及DPPH清除力)进入模型,冷藏1-MCP 组有2 个指标(蔗糖与叶绿素b 含量)入选,室温对照组果糖与WSP 含量进入模型,而室温1-MCP 组仅1 个变量(叶绿素b 含量)进入模型。通过计算和比较决策系数,确定冷藏对照组、冷藏1-MCP组、室温对照组、室温1-MCP组中影响果肉硬度的决策变量分别为总酚、蔗糖、果糖和叶绿素b含量。
通过通径分析可以进一步分析相关变量对硬度的作用方式,明确各变量对硬度影响的直接作用和间接作用。由表3可知,冷藏对照组中,与灵武长枣硬度相关系数最大的是总酚含量(0.889),但总酚含量对硬度的直接作用系数仅为0.285,间接作用总和为0.604,其中通过果糖含量对硬度的间接作用系数最大(0.267),表明总酚含量对硬度的影响主要为间接作用。冷藏1-MCP 组对硬度直接作用最大的因子是蔗糖含量(0.824),叶绿素b 含量的直接作用系数仅为0.229 小于其通过蔗糖含量对硬度的间接作用系数(0.318)。室温对照组果糖对硬度有最大的直接负向作用(-0.796)。
表4为灵武长枣果肉褐变度的多元回归方程与决策系数结果。4个处理组多元回归模型的剩余因子≤0.217,表明模型误差小且影响褐变度的主要因素均已考虑在内。低温对照组与果肉褐变相关的入选变量有3个,分别为葡萄糖、WSP、叶绿素b含量,其中葡萄糖为决策因子。低温1-MCP组同样有3个变量进入模型,葡萄糖同样为其决策因子;室温对照组有4个变量对褐变起重要作用,关键因子为果糖,其决策系数高达0.900;室温1-MCP处理组SSP和果糖含量入选模型,SSP为决策因子。
表4 灵武长枣果肉褐变度(Y)多元回归方程与决策系数
Table 4 Multiple stepwise regression equations and decision coefficients of Lingwuchangzao fruit browning degree
注:CT-CK 组中X1,X2,X3 分别表示葡萄糖、WSP 和叶绿素b 含量;CT-MCP 组中X1,X2,X3 分别表示蔗糖、葡萄糖、叶绿素b;RT-CK 组中X1,X2,X3,X4 分别表示果糖、DPPH 清除力、SSP、叶绿素b 含量;RT-MCP 组中X1,X2 表示SSP 和果糖含量。
Note:CT-CK group.X1.glucose,X2.WSP,X3.chlorophyll b;CT-MCP group.X1.sucrose,X2.glucose,X3.chlorophyll b;RT-CK group.X1.fructose,X2.DPPH scavenging power,X3.SSP,X4.chlorophyll b;RT-MCP group.X1.SSP,X2.fructose.
0.214 0.217 0.032 0.158处理Treatment CT-CK CT-MCP RT-CK RT-MCP多元回归方程Multiple regression equation Y=0.231+0.020 X1+0.001 X2-0.873 X3 Y=0.505-0.009 X1+0.016 X2-0.413 X3 Y=0.030+0.049 X1+0.050 X2+0.000 X3+0.162 X4 Y=0.655-0.001 X1+0.022 X2决策因子Decision factor葡萄糖Glucose葡萄糖Glucose果糖Fructose SSP决策系数Decision coefficient 0.618 0.608 0.900 0.799 R2P e 0.954 0.953 0.999 0.975 0.000 0.001 0.04 0.005
对不同处理组影响果肉褐变的多个变量进行通径分析,结果如表5 所示。冷藏对照组中影响褐变度的直接正向作用系数最高是葡萄糖含量(0.559),其次为叶绿素b 含量的直接负向作用(-0.409)。冷藏1-MCP 组中葡萄糖含量对褐变度的直接正向作用系数最高(0.484),而蔗糖含量通过葡萄糖含量对褐变度产生的间接负向影响最为明显(-0.400)。室温对照组果糖含量对褐变度的直接作用最大(1.020),远高于其他3 个指标的直接作用系数。其中DPPH 清除力和叶绿素b含量对褐变度直接作用为正向效应,而由于他们通过果糖含量对褐变产生较大的负向间接作用,导致DPPH清除力和叶绿素b含量对果肉褐变度的综合作用效果为负向作用。室温MCP 组中果糖含量通过SSP 含量对褐变度产生的间接作用系数0.465,高于果糖的直接作用系数。
表5 不同处理组灵武长枣果肉褐变度与品质指标的通径分析
Table 5 Path analysis between flesh browning degree and fruit quality indexes of Lingwuchangzao in different treatment groups
注:X1,X2,X3,X4,同表4。
Note:X1,X2,X3,X4,same as Table 4.
处理Treatment CT-CK因子Factor相关系数Correlation coefficient 0.832 0.559-0.577-0.894 0.870-0.518 0.951-0.203-0.707-0.752-0.935 0.854直接作用Direct effect 0.559 0.374-0.409-0.397 0.484-0.254 1.020 0.331-0.291 0.148-0.661 0.389间接作用Indirect effect→X1→X2 0.137→X4→X3 0.136-0.020 0.205-0.186 CT-MCP 0.018-0.400-0.098 0.058 RT-CK 0.328-0.153-0.111-0.152-0.467-0.582-0.581 0.166-0.036-0.084-0.031 0.126 X1 X2 X3 X1 X2 X3 X1 X2 X3 X4 X1 X2 0.041-0.069-0.274-0.249 RT-MCP 0.465
灵武长枣采后的质地软化和果肉褐变现象是影响灵武长枣贮藏性和商品性的重要因素。前人[22,31-32]研究表明1-MCP处理可以维持枣果肉硬度、糖酸和Vc含量,抑制果实呼吸和乙烯释放速率。张瑞等[9]发现在0 ℃贮藏条件下,1 μL·L-1的1-MCP处理有效维持了灵武长枣的果实硬度。本研究也证实1-MCP 与低温条件延缓了灵武长枣果实硬度的降低,延长了贮藏期。果实细胞壁多糖的降解和溶解度的增加影响着果实质地软化[33]。本研究发现1-MCP 抑制了低温贮藏灵武长枣SSP 含量的下降和WSP、CSP 含量的上升。任玉峰等[3]同样发现灵武长枣采后低温贮藏期间水溶性果胶和离子结合型果胶含量整体呈上升趋势,共价结合型果胶在贮藏后期下降,与本研究结果相似。果实细胞壁结构在果实成熟软化过程中发生改变,细胞粘连减少,溶解度较低的高分子量细胞壁多糖发生降解或解聚,使得大分子长链多糖的含量减少,溶解度较大的小分子量组分含量增多,表现为WSP和CSP含量增多SSP含量减少[34-36]。1-MCP通过抑制水果细胞壁降解酶活性,延缓纤维素和原果胶物质的降解以及可溶性果胶的升高,进而维持果实硬度[15-16,20,34,37-38]。
枣果实质地软化及褐变也与果实中糖类物质代谢相关。糖类的转化可以改变细胞的膨压进而导致果实软化[18]。本研究结果显示采后贮藏过程灵武长枣果实蔗糖含量逐渐减少而葡萄糖和果糖含量增加,1-MCP有效缓解冷藏条件下果实蔗糖含量的减少。这与谢斯雯等[18]、韩帅等[39]在桃果实中的研究结果相似,表明贮藏过程中蔗糖含量变化受乙烯调控。可溶性糖是呼吸代谢消耗的底物,1-MCP作为乙烯受体抑制剂通过调控呼吸作用调节糖代谢相关酶活性,从而延缓果实糖代谢进程并延缓果实软化[40]。1-MCP 可以显著抑制蔗糖磷酸合成酶(SPS)活性下降和蔗糖合成酶(SS)活性的升高,抑制SPS基因表达量的变化幅度,从而抑制果实贮藏期蔗糖含量的下降[18]。此外,果实中的还原糖作为无氧呼吸的直接作用底物,影响枣果酒化现象的发生[41]。李喜宏等[42]研究也发现1-MCP处理可以影响灵武长枣糖代谢进程,延缓酒化和褐变现象的发生。
灵武长枣果肉在采后贮藏过程中会发生褪绿转黄,影响其商品性状和营养品质。绿色果蔬褪绿转黄与叶绿素的降解密切相关[43]。本研究结果显示1-MCP 处理可以延缓叶绿素含量在贮藏中的降低。马风丽等[19]发现1-MCP可以推迟玉露香梨果皮叶绿素分解代谢途径中的下游反应,延缓叶绿素的降解,维持较好的果实品质。田雪婷等[44]同样发现1-MCP 通过调节澳洲青苹果皮叶绿素降解途径相关基因表达水平,从而控制代谢产物的降解和生成,延缓果皮叶绿素降解。其他研究也证实1-MCP 处理可以减少果实中叶绿素降解酶的含量,抑制叶绿素降解基因的表达,进而延缓叶绿素降解和果肉颜色的改变[19,45]。
果实酚类物质的酶促褐变同样是引起果肉褐变的一个重要因素。随着果实的成熟衰老,细胞膜受损,多酚氧化酶(Polyphenol oxidase,PPO)等与酚类物质接触并氧化酚类物质产生醌类化合物,发生酶促褐变,引起组织褐变[31,46]。本研究结果表明随着贮藏时间的延长,灵武长枣总酚含量和抗氧化能力下降,1-MCP可以延缓贮藏期抗氧化能力的降低以及贮藏末期总酚含量的减少。Xu 等[47]的研究同样发现1-MCP可以有效降低黄冠梨果实褐变指数,延缓总酚和类黄酮物质的降解。金童等[22]、Ozturk 等[48]也发现1-MCP可以维持枣果实较高的总酚、类黄酮含量和抗氧化性(DPPH清除力和FRAP能力),提高枣果实的贮藏品质。主要原因在于高抗氧化能力有助于保持组织中活性氧(Reactive oxygen species,ROS)平衡状态,减缓衰老进程[26]。而1-MCP可以显著抑制贮藏过程中果实的PPO酶活性,延缓过氧化物酶(Peroxidase,POD)、过氧化氢酶(Catalase,CAT)、超氧化物歧化酶(Superoxide dismutase,SOD)等活性氧代谢酶活性的下降,维持果实较高的总酚含量和抗氧化能力,阻止活性氧自由基的生成[20,31,47]。
在灵武长枣贮藏过程中果实组织内发生一系列生理生化变化如细胞壁降解、糖类转化、叶绿素降解、酚类物质氧化等,这些反应之间存在着有机联系和相互作用,共同影响着果实的贮藏品质。笔者在本研究中通过理化品质指标分析发现1-MCP 处理结合低温冷藏可以延缓灵武长枣果实蔗糖和叶绿素b 含量、DPPH 清除力的减少,延缓果肉软化和褐变现象的发生。通过相关性分析、多元回归及通径分析进一步分析影响果肉硬度和褐变度的主要指标及其直接作用和间接作用。结果显示冷藏与室温组中果实硬度与3种细胞壁果胶含量的相关系数大多低于其与可溶性糖含量和叶绿素含量的相关系数,可能是因为果胶含量在贮藏过程中变化波动较大引起的,仅室温对照组中WSP 含量进入多元回归方程。冷藏条件下1-MCP 处理组中与果实硬度相关系数最高的为蔗糖含量,而且通径分析结果显示蔗糖含量对果实硬度的直接正向作用最大,是影响果肉硬度的决策因子。冷藏1-MCP 处理组中与褐变度相关系数最高的同样为蔗糖含量,但通径分析表明对褐变度的直接正向作用最大的是葡萄糖含量,是影响褐变度的决策因子,蔗糖含量对褐变度影响的直接作用与其通过葡萄糖含量对褐变度的间接作用大小相近。这些结果表明果实中可溶性糖含量通过直接或间接作用分别对冷藏条件下1-MCP 处理组灵武长枣硬度和褐变度具有不同程度的正向或负向效应。糖类物质作为呼吸作用的底物,是众多代谢通路的中间产物和合成新的有机物的基础。糖代谢参与调控植物的发育、成熟和衰老等多个过程,影响着果实采后的一系列代谢进程[39]。1-MCP和低温通过调控灵武长枣糖类代谢,延缓了果肉中可溶性糖含量的变化,进而保持较好的果实品质。孙志栋等[24]通过通径分析方法发现还原糖是影响杨梅好果率的主要决策因子,采前喷施0.1%的40 nm 纳米TiO2延缓了还原糖含量的上升,保持较好的果实品质。胡花丽等[26]以总叶绿素为因变量,通过通径分析发现DPPH清除率通过直接作用以及叶酸、抗坏血酸及·OH 清除率的间接作用影响甘蓝的叶绿素,推测1-MCP 对采后贮藏特性的影响主要与维持抗氧化能力有关。利用通径分析方法分析采后保鲜技术对果实品质调控方面的研究较少,研究结果受所选择的理化指标所影响,应综合考察影响果实品质的关键指标进行研究。
1-MCP 处理结合低温在贮藏15~22 d 时延缓了灵武长枣果肉CSP含量的增加以及蔗糖和叶绿素b含量的下降,在贮藏后期维持较高的蔗糖含量及DPPH 清除力,延缓果肉硬度的下降和褐变度的增加。冷藏条件下1-MCP 处理灵武长枣中可溶性糖含量通过直接或间接作用对果实硬度和褐变度产生了不同程度的正向或负向影响,低温及1-MCP处理对灵武长枣的保鲜效果与延缓可溶性糖含量变化有关。
[1]程丽娟,刘贵珊,何建国,杨晓玉,万国玲,张翀,马超.灵武长枣蔗糖含量的高光谱无损检测[J]. 食品科学,2019,40(1):285-291.CHENG Lijuan,LIU Guishan,HE Jianguo,YANG Xiaoyu,WAN Guoling,ZHANG Chong,MA Chao. Nondestructive detection of sucrose content of Lingwu Changzao jujubes by hyperspectral imaging[J].Food Science,2019,40(1):285-291.
[2]陈丽华,杨喜萌,贾昊,宋丽华.气温升高与干旱对灵武长枣果实糖积累、蔗糖代谢关键酶及相关基因表达的影响[J].核农学报,2020,34(9):2112-2123.CHEN Lihua,YANG Ximeng,JIA Hao,SONG Lihua. Effects of elevated temperature and drought on sugar accumulation,key sucrose enzymes metabolism and related gene expression in fruit of jujube cultivar Lingwuchangzao[J]. Journal of Nuclear Agricultural Sciences,2020,34(9):2112-2123.
[3]任玉峰,姜牧炎,马文平,辛月.灵武长枣采后低温贮藏期间细胞壁组分的变化[J].北方园艺,2018(18):114-117.REN Yufeng,JIANG Muyan,MA Wenping,XIN Yue. Changes of cell wall components in fruit of Zizphus jujube Mill.‘Lingwuchangzao ’at low temperature during the postharvest period[J].Northern Horticulture,2018(18):114-117.
[4]吴彩娥,王文生,寇晓红,梁丽雅.CaCl2 和6-BA 溶液处理对枣果软化褐变与相关酶活性研究[J].农业工程学报,2001,17(5):127-130.WU Cai’e,WANG Wensheng,KOU Xiaohong,LIANG Liya.Effect of CaCl2 and 6-BA solution on softening,browning and activity of related enzyme in postharvest jujube fruits[J]. Transactions of the Chinese Society of Agricultural Engineering,2001,17(5):127-130.
[5]梁小娥,王三宝,赵迎丽,石建新,赵猛.枣采后果肉软化的生长和细胞超微结构变化[J].园艺学报,1998,25(4):333-337.LIANG Xiao’e,WANG Sanbao. ZHAO Yingli,SHI Jianxin,ZHAO Meng. Poatharvest biochemical and ultrastructural changes in flesh of Chinese jujube fruits during softening[J].Acta Horticulturae Sinica,1998,25(4):333-337.
[6]李红卫,冯双庆.冬枣采后果皮成分及氧化酶活性变化与乙醇积累机理的研究[J].农业工程学报,2003,19(3):165-168.LI Hongwei,FENG Shuangqing. Changes of composition and activity of oxidative enzymes in the pericarp and mechanism of ethanol accumulation in brumal jujube[J]. Transactions of the Chinese Society of Agricultural Engineering,2003,19(3):165-168.
[7]班兆军,李莉,张培培,张兴亮,李冰峰,李喜宏.生理调节剂对灵武长枣超长期贮藏效果的影响[J].江苏农业学报,2009,25(2):391-394.BAN Zhaojun,LI Li,ZHANG Peipei,ZHANG Xingliang,LI Bingfeng,LI Xihong.Effect of physiological regulators on extra extended storage of Lingwu long jujube[J]. Jiangsu Journal of Agricultural Sciences,2009,25(2):391-394.
[8]任玉峰,李壮桃,张冠楠.涂膜处理对灵武长枣低温贮藏期间抗氧化酶和PPO 活性的影响[J]. 安徽农业科学,2018,46(19):170-171,183.REN Yufeng,LI Zhuangtao,ZHANG Guannan. Effects of coating treatment on the activities of antioxidant enzyme and PPO of Zizphus jujube mill‘Lingwuchangzao’during low temperature storage[J].Journal of Anhui Agricultural Sciences,2018,46(19):170-171,183.
[9]张瑞,张新,李喜宏,杨莉杰,张宇峥,贾晓昱.果蜡、特克多结合1-MCP 处理对灵武长枣贮藏品质的影响[J].西华大学学报(自然科学版),2018,37(5):41-45.ZHANG Rui,ZHANG Xin,LI Xihong,YANG Lijie,ZHANG Yuzheng,JIA Xiaoyu.The effect of fruit wax and thiabendazole combined with 1-MCP treatment on the storage quality of Lingwu long jujube[J]. Journal of Xihua University (Natural Science Edition),2018,37(5):41-45.
[10]韩海彪,张有林,沈效东,李永华,赵健.不同气体成分对灵武长枣贮藏中生理变化的影响[J].农业工程学报,2007,23(10):246-250.HAN Haibiao,ZHANG Youlin,SHEN Xiaodong,LI Yonghua,ZHAO Jian. Effects of different atmosphere compositions on physiological changes of Lingwu long jujube during storage[J].Transactions of the Chinese Society of Agricultural Engineering,2007,23(10):246-250.
[11]刘慧,张静林,刘杰超,张光弟,方海田,张强,焦中高.抗坏血酸结合自发气调包装对灵武长枣贮藏品质和抗氧化性的影响[J].食品科学,2021,42(1):257-263.LIU Hui,ZHANG Jinglin,LIU Jiechao,ZHANG Guangdi,FANG Haitian,ZHANG Qiang,JIAO Zhonggao. Effect of ascorbic acid combined with modified atmosphere packaging on storage quality and antioxidant activity of lingwuchangzao jujube fruit[J].Food Sciences,2021,42(1):257-263.
[12]高露,宋丽华,万仲武,杨勇.贮藏温度对灵武长枣采后果实失水规律及品质的影响研究[J].河南农业大学学报,2020,54(1):30-37.GAO Lu,SONG Lihua,WAN Zhongwu,YANG Yong.Effect of ambient temperature on fruit water loss of Lingwuchangzao after harvest[J]. Journal of Henan Agricultural University,2020,54(1):30-37.
[13]杨莉杰,李喜宏,张宇峥,朱刚,张瑞,张苹苹,唐先谱.灵武长枣不同温度贮藏特性的研究[J]. 食品研究与开发,2018,39(3):202-205.YANG Lijie,LI Xihong,ZHANG Yuzheng,ZHU Gang,ZHANG Rui,ZHANG Pingping,TANG Xianpu. Storage characteristics of Lingwu long jujubes at different temperatures[J].Food Research and Development,2018,39(3):202-205.
[14]SALAZAR J,JORQUERA C,CAMPOS-VARGAS R,JORGENSEN C,ZAPATA P,INFANTE R. Effect of the application timing of 1-MCP on postharvest traits and sensory quality of a yellow-fleshed kiwifruit[J]. Scientia Horticulturae,2019,244:82-87.
[15]陈鸥,吴雪莹,邓丽莉,曾凯芳.1-甲基环丙烯处理对采后李果实硬度变化的影响机制[J].食品科学,2020,41(3):185-191.CHEN Ou,WU Xueying,DENG Lili,ZENG Kaifang. Effect of 1-methylcyclopropene treatment on firmness change of postharvest plum fruit and underlying mechanism[J]. Food Sciences,2020,41(3):185-191.
[16]朱婉彤,冯作山,白羽嘉,热合满·艾拉,王瑾,古丽皮耶·艾海提.乙烯和1-MCP 对伯谢克辛甜瓜果实软化及细胞壁降解的影响[J].现代食品科技,2019,35(12):94-101.ZHU Wantong,FENG Zuoshan,BAI Yujia,Reheman · Aila,WANG Jin,Gulipiye·Ahaimaiti.Effects of ethylene and 1-MCP treatments on softening and cell wall degradation of Bethekxin melon fruit[J]. Modern Food Science and Technology,2019,35(12):94-101.
[17]LU X G,MENG G L,JIN W G,GAO H. Effects of 1-MCP in combination with Ca application on aroma volatiles production and softening of‘Fuji’apple fruit[J]. Scientia Horticulturae,2018,229:91-98.
[18]谢斯雯,桑倩姿,姜航,孟静璇,罗东涛,陈亚辉,张竹茂,宋志忠.1-MCP 处理对不同肉质桃果实糖、酸含量及相关基因表达水平的影响[J/OL].分子植物育种,2021,https://kns.cnki.net/kcms/detail/46.1068.S.20210106.1716.005.html XIE Siwen,SANG Qianzi,JIANG Hang,MENG Jingxuan,LUO Dongtao,CHEN Yahui,ZHANG Zhumao,SONG Zhizhong.Effects of 1-MCP treatment on sugar acid content and related genes expression in different flesh texture peaches[J/OL].Molecular Plant Breeding,2021,https://kns.cnki.net/kcms/detail/46.1068.S.20210106.1716.005.html
[19]马风丽,杜艳民,王阳,佟伟,刘佰霖,王文辉,贾晓辉.1-MCP对玉露香梨采后果实品质和叶绿素保持的影响[J].园艺学报,2019,46(12):2299-2308.MA Fengli,DU Yanmin,WANG Yang,TONG Wei,LIU Bailin,WANG Wenhui,JIA Xiaohui. Effect of 1-methylcyclopropene(1-MCP) on quality and chlorophyll maintenance of postharvest Yuluxiang pear[J]. Acta Horticulturae Sinica,2019,46(12):2299-2308.
[20]LI L,LI C B,SUN J,SHENG J F,ZHOU Z G,XIN M,YI P,HE X M,ZHENG F J,TANG Y Y,LI J M,TANG J.The effects of 1-Methylcyclopropene in the regulation of antioxidative system and softening of mango fruit during storage[J]. Journal of Food Quality,2020(2):1-11.
[21]董国庆,李莉,班兆军,李喜宏.1-MCP 对灵武长枣采后生理变化的影响[J].保鲜与加工,2009,9(5):15-18.DONG Guoqing,LI Li,BAN Zhaojun,LI Xihong. Effects of 1-MCP on postharvest physiological responses of Lingwu long jujube fruits[J].Storage and Processing,2009,9(5):15-18.
[22]金童,韩聪,杨晓颖,孙斐,杜雅珉,傅茂润,姜健美,于有良,吴廷俊.1-甲基环丙烯和二氧化氯复合处理对冬枣采后生理及贮藏品质的影响[J].食品研究与开发,2020,41(6):25-31.JIN Tong,HAN Cong,YANG Xiaoying,SUN Fei,DU Yamin,FU Maorun,JIANG Jianmei,YU Youliang,WU Tingjun. Effects of combined treatment of 1-methylcyclopropene (1-MCP)and chlorine dioxide (ClO2) on postharvest physiology and storage quality of winter jujube[J]. Food Research and Development,2020,41(6):25-31.
[23]杜家菊,陈志伟.使用SPSS 线性回归实现通径分析的方法[J].生物学通报,2010,45(2):4-6.DU Jiaju,CHEN Zhiwei. Path analysis method using linear regression in SPSS[J].Bulletin of Biology,2010,45(2):4-6.
[24]孙志栋,焦云,李共国,史婷婷.采前喷施纳米钛提升冷藏杨梅品质及其通径分析[J].核农学报,2020,34(9):2003-2010.SUN Zhidong,JIAO Yun,LI Gongguo,SHI Tingting.Path analysis of pre-harvest spraying rutile TiO2 to enhance the quality of summer storage Myrica rubra[J]. Journal of Nuclear Agricultural Sciences,2020,34(9):2003-2010.
[25]孙志栋,李共国,沈颖,王利平.采前喷施LAE 提高蓝莓冷藏品质及其通径分析[J].包装工程,2021,42(7):28-34.SUN Zhidong,LI Gongguo,SHEN Ying,WANG Liping. Path analysis of improving cold storage quality of blueberry by preharvest spraying LAE[J]. Packaging Engineering,2021,42(7):28-34.
[26]胡花丽,赵欢欢,罗淑芬,周宏胜,李建斌,李鹏霞.多变量统计分析评价1-甲基环丙烯对牛心甘蓝贮藏特性的影响[J].食品与发酵工业,2020,46(16):208-214.HU Huali,ZHAO Huanhuan,LUO Shufen,ZHOU Hongsheng,LI Jianbin,LI Pengxia. Evaluation the effect of 1-methylcyclopropene on storage characteristic of heart-shaped cabbage based on multivariate statistical analysis[J].Food and Fermentation Industries,2020,46(16):208-214.
[27]CERNÎŞEV S. Effects of conventional and multistage drying processing on non-enzymatic browning in tomato[J]. Journal of Food Engineering,2013,1(1):114-118.
[28]LIU H,CHEN F S,LAI S J,TAO J R,YANG H S,JIAO Z G.Effects of calcium treatment and low temperature storage on cell wall polysaccharide nanostructures and quality of postharvest apricot (Prunus armeniaca)[J]. Food Chemistry,2017,225:87-97.
[29]李佳秀,张春岭,刘慧,陈大磊,刘杰超,焦中高.葡萄汁中糖酸组成分析及在掺假鉴别中的应用[J]. 果树学报,2019,36(11):1566-1577.LI Jiaxiu,ZHANG Chunling,LIU Hui,CHEN Dalei,LIU Jiechao,JIAO Zhonggao. Profiles of soluble sugars and organic acids in grape juice and their application for authentication[J].Journal of Fruit Science,2019,36(11):1566-1577.
[30]袁志发,周静芋,郭满才,雷雪芹,解小莉.决策系数:通径分析中的决策指标[J].西北农林科技大学学报(自然科学版),2001,29(5):131-133.YUAN Zhifa,ZHOU Jingyu,GUO Mancai,LEI Xueqin,XIE Xiaoli.Decision coefficient:the decision index of path analysis[J].Journal of Northwest A&F University(Natural Science Edition),2001,29(5):131-133.
[31]陈国刚,郭景瑜,于译,王海.1-MCP 和壳聚糖处理保持红枣贮藏品质及其机理研究[J].农业工程学报,2019,35(22):338-344.CHEN Guogang,GUO Jingyu,YU Yi,WANG Hai.1-methylcyclopropene (1-MCP) and chitosan maintaining quality and its mechanization of postharvest jujube fruit[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(22):338-344.
[32]张婷,车凤斌,艾尔麦克,胡柏文,李萍,潘俨.保鲜剂对阿克苏灰枣贮藏效果的研究[J].新疆农业科学,2010,47(1):87-91.ZHANG Ting,CHE Fengbin,Aiermaike,HU Baiwen,LI Ping,PAN Yan. Research on storage effect of preservative solution on Aksu jujube quality[J]. Xinjiang Agricultural Sciences,2010,47(1):87-91.
[33]BRAHEM M,RENARD C M G C,GOUBLE B,BUREAU S,BOURVELLEC C L. Characterization of tissue specific differences in cell wall polysaccharides of ripe and overripe pear fruit[J].Carbohydrate Polymers,2017,156:152-164.
[34]LIN Y F,LIN Y X,LIN H T,LIN M S,LI H,YUAN F,CHEN Y H,XIAO J B. Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage[J]. Food Chemistry,2018,264:1-8.
[35]金昌海,索标,阚娟,王红梅,汪志君.桃果实成熟软化过程中细胞壁多糖降解特性的研究[J].扬州大学学报(农业与生命科学版),2006,27(3):70-75.JIN Changhai,SUO Biao,KAN Juan,WANG Hongmei,WANG Zhijun. Studies on degradation characteristic of cell-wall polysaccharide during peach fruit ripening[J]. Journal of Yangzhou University(Agricultural and Life Science Edition),2006,27(3):70-75.
[36]BRUMMELL D A. Cell wall disassembly in ripening fruit[J].Functional Plant Biology,2006,33:103-119.
[37]LI X,CAO S F,ZHENG Y H,SUN A P.1-MCP suppresses ethylene biosynthesis and delays softening of‘Hami’melon during storage at ambient temperature[J]. Journal of Science of Food Agriculture,2011,91(14):2684-2688.
[38]郭丹,韩英群,魏鑫,魏潇,王柏松,郝义.1-MCP 处理对岳帅苹果冷藏软化及相关生理指标的影响[J].食品科学,2017,38(17):266-272.GUO Dan,HAN Yingqun,WEI Xin,WEI Xiao,WANG Baisong,HAO Yi. Effect of 1-MCP treatment on softening and related physiological indices in‘Yueshuai’apples during cold storage[J].Food Sciences,2017,38(17):266-272.
[39]韩帅,蔡洪芳,马瑞娟,俞明亮,郁志芳.1-MCP 处理对采后桃果实糖代谢的影响[J].食品工业科技,2018,39(18):264-269.HAN Shuai,CAI Hongfang,MA Ruijuan,YU Mingliang,YU Zhifang. Effect of 1-MCP on sugar metabolism of postharvest peach fruit[J]. Science and Technology of Food Industry,2018,39(18):264-269.
[40]谢季云,赵晓敏,汪永琴,马少帅,白友强,杜林笑,马楠,李学文.1-MCP 处理对不同期采收的阿克苏富士苹果在采后贮藏期糖代谢的影响[J].现代食品科技,2018,34(9):111-121,214.XIE Jiyun,ZHAO Xiaomin,WANG Yongqin,MA Shaoshuai,BAI Youqiang,DU Linxiao,MA Nan,LI Dan,LI Xuewen. Effect of 1-MCP treatment on sugar metabolism in aksu fuji apples harvested at different stages and stored for different periods[J].Modern Food Science and Technology,2018,34(9):111-121,214.
[41]任小林,李嘉瑞,常经武.枣果实的呼吸和乙烯代谢[J].果树科学,1994,11(2):108-110.REN Xiaolin,LI Jiarui,CHANG Jingwu. Respiration and ethylene metabolism of jujube fruit[J]. Journal of Fruit Science,1994,11(2):108-110.
[42]李喜宏,班兆军,李莉,胡云峰,杨振.灵武长枣贮藏的关键技术研究[J].果树学报,2009,26(1):94-97.LI Xihong,BAN Zhaojun,LI Li,HU Yunfeng,YANG Zhen.Study on the key technology for storage of Lingwu Changzao jujube[J].Journal of Fruit Science,2009,26(1):94-97.
[43]董宇,赵倩,关军锋,高曼曼,李义红.1-MCP 对早魁梨采后成熟软化、叶绿素含量和果皮结构的影响[J].河北农业大学学报,2013,36(6):33-37.DONG Yu,ZHAO Qian,GUAN Junfeng,GAO Manman,LI Yihong. Effect of 1-MCP on the postharvest fruit softening,chlorophyll content and peel structure in Zaokui pear[J]. Journal of Hebei Agricultural University,2013,36(6):33-37.
[44]田雪婷,吴晗笑,王雷,田晓宁,李瑞,戚英伟,任小林.1-MCP处理对采后澳洲青苹苹果叶绿素降解的影响[J].果树学报,2020,37(5):734-742.TIAN Xueting,WU Hanxiao,WANG Lei,TIAN Xiaoning,LI Rui,QI Yingwei,REN Xiaolin. Effect of 1-MCP treatment on chlorophyll degradation in postharvest‘Granny Smith’apple fruit[J].Journal of Fruit Science,2020,37(5):734-742.
[45]LÜ J Y,ZHANG M Y,BAI L,HAN X Z,GE Y H,WANG W H,LI J R. Effect of 1-methylcyclopropene (1-MCP) on the expression of genes involved in the chlorophyll degradation pathway of apple fruit during storage[J]. Food Chemistry,2020,308:125707.
[46]GAO Y,KAN C N,WAN C,CHEN C P,CHEN C Y,CHEN M,CHEN J Y. Quality and biochemical changes of navel orange fruits during storage as affected by cinnamaldehyde-chitosan coating[J].Scientia Horticulturae,2018,239:80-86.
[47]XU F X,ZHANG K X,LIU S Y. Evaluation of 1-methylcyclopropene (1-MCP) and low temperature conditioning (LTC) to control brown of Huangguan pears[J]. Scientia Horticulturae,2020,259:108738.
[48]OZTURK B,YILDIZ M,YILDIZ K,GUN S. Maintaining the postharvest quality and bioactive compounds of jujube(Ziziphus jujuba Mill.‘Li’)fruit by applying 1-methylcyclopropene[J].Scientia Horticulturae,2021,275:109671.
Path analysis of the effect of 1-MCP on the flesh softening and browning in Lingwuchangzao jujube during storage