9个品种桑果营养、香气成分与抗氧化活性评价

贾漫丽1,2,李 娜1,2,王彬彬1,2,范 伟1,2,夏爱华1,李季生1,2*

1河北省高校特产蚕桑应用技术研发中心,河北承德 067000;2承德医学院蚕业研究所,河北承德 067000)

摘 要:【目的】为了科学、合理利用果桑品种资源,比较不同桑椹品种间营养、香气成分和抗氧化活性的差异,筛选出适宜深度开发的北方果桑品种。【方法】以河北省主栽的9个品种果桑的果实为材料,采用紫外分光光度法、固相微萃取联合气相色谱-质谱联用法、酶标仪法,对每个品种桑椹的营养、香气成分和抗氧化指标进行检测,并运用SPSS 23.0软件对测定结果进行差异分析及主成分分析(Principal Component Analysis,PCA)。【结果】桂花出汁率(76.754%)和含水率(85.105%)最高,蒙桑可溶性固形物含量(w,后同)(20.383%)、总酸含量(21.365 mg·g-1)、还原糖含量(68.844%)以及抗坏血酸含量(89.488 mg·g-1)最高,安椹的总黄酮含量(26.468 mg·g-1)、总多酚含量(25.190 mg·g-1)、DPPH清除能力(25.202 mg·g-1 Vc当量)和ABTS清除能力(51.778 mg·g-1 Vc当量)均显著高于其他品种。9个品种桑椹共检测出59 种香气化合物,主要分为酯、醇、酮、醛、酸5 大类,相对含量从高到低依次为酯类(35.71%)、醛类(28.57%)、酸类(14.29%)、醇类(7.14%)和酮类(7.14%)。香气物质种类最多的为东光大白(36种),其他依次为桂花(34种)、白玉王(33种)、安椹(28种)、节曲(27种),其余4个品种香气成分种类较少。【结论】9个品种桑椹营养、香气成分与抗氧化能力存在显著差异(p <0.05),PCA结果显示蒙桑的F值最高为1.611,其次是白玉王和安椹,这3个品种的综合品质最佳,适宜作为深度开发的优良果桑品种。

关键词:桑椹;营养成分;香气成分;活性成分;主成分分析

桑树是我国传统树种,隶属于桑科桑属,长期以来,桑树在我国除作为家蚕的饲料外,在作为蛋白来源、药用植物、生态树种和水果品种等方面也有广泛的应用。桑椹(Fructus Mori)是桑树的果实,也是国家卫生部首批批准的药食同源农产品之一[1]。桑椹含有较高的营养成分,如氨基酸、花青素、生物碱、多糖[2]、多酚等[3-4]。现代医学研究表明,桑椹中丰富的酚类化合物是主要的抗氧化活性成分,同时也是抑制蛋白质非酶糖基化的主要成分。此外,桑椹还可以显著降低血糖和血脂[5-6],以及在减轻更年期代谢综合征,促进血管内皮一氧化氮合成并舒张血管和降低体内血压[7],调节肠道菌群、抗动脉粥样硬化[8]、解除疲劳[9-10]等方面都有显著作用。

我国作为蚕桑的发源地,品种资源十分丰富。尤其近年来,蚕桑产业的传统结构发生了极大的转变,蚕桑业的重点逐渐转移到桑树的综合开发利用上,以果桑种植、休闲采摘为主的桑产业迅速壮大,全国桑椹产量逐年增加[11-12],其生产和消费随之迅速增长。因此,用桑椹作为原料进行深加工是未来果桑产业研究的重点,也是提高桑果商品化销售水平的必要途径。目前,温靖等[4]分析了广东省主栽的6个果桑品种的加工品质性状差异,筛选适合深加工的果桑品种。黄盖群等[11]对四川省的28 份果桑品种资源主要经济性状进行主成分分析,筛选出果用经济性状较优的10 个品种。夏英杰[13]建立了中药桑椹的质量控制方法,并对桑椹药材中活性成分的相关性进行研究。何雪梅等[9]对广西地区13个主栽桑品种的桑椹营养与药用品质进行了综合评价,得出结论:3个品种桂诱M257、桂桑优62和大10可作为桑椹药品、保健品开发的专用果桑品种。为了科学、合理利用北方果桑品种资源,以河北省主栽的9个品种为材料,对各品种的成熟果实的营养成分、活性成分、香气成分以及抗氧化能力等相关指标进行检测,并进行主成分分析,以筛选出适宜深度开发的优良果桑品种。

1 材料和方法

1.1 材料

9 个试验果桑品种分别为安椹、节曲、蒙桑、8632、物45、鲁诱7号、桂花、白玉王、东光大白,种植于承德医学院蚕业研究所(河北省高校特产蚕桑应用技术研发中心)蚕桑科技园果桑圃中(41°1′52″N,117°57′14″E),属温带大陆性季风气候,年降水量402.3~882.6 mm,雨量集中,年均气温9 ℃,昼夜温差大,霜害较重。各品种均采用嫁接繁殖,行距3 m,株距2 m,中低干拳式养成,栽植环境、管理水平一致,树龄3 a,树势相似。各品种果实特性祥见表1。

表1 9 个品种桑果主要特性
Table 1 Main characteristics of 9 varieties of mulberry

果桑品种Mulberry variety 来源地区Area of origin 所属桑种Mulberry species安椹Anshen 白桑Morus alba L.果实颜色Fruit color紫黑色Purple black果形指数Fruit shape index 1.767±0.154单芽坐果数Fruit amount of individual bud 8~11单果质量Weight per fruit/g 1.430±0.158节曲Jiequ 1.551±0.0163~51.557±0.205蒙桑Mengsang紫黑色Purple black紫红色Purplish red 2.023±0.0715~70.986±0.012 8632白桑Morus alba L.蒙桑Morus mongolica Schneid.鲁桑Morus multicaulis Perr.紫黑色Purple black 2.238±0.1634~55.466±0.246物45 Wu45紫黑色Purple black1.551±0.0164~61.557±0.205鲁诱7号Luyou7紫红色Purplish red 1.969±0.1603~52.438±0.356桂花Guihua鲁桑Morus multicaulis Perr.鲁桑Morus multicaulis Perr.白桑Morus alba L.淡紫色Lavender1.804±0.0336~81.694±0.321白玉王Baiyuwang 白桑Morus alba L.乳白色Milky white 2.332±0.0635~74.267±0.407东光大白Dongguangdabai承德医学院蚕业研究所培育Cultivated by Sericulture Institute of Chengde Medical University天津Tianjin河北省兴隆县农家品种Varieties in Xinglong County,Hebei Province西北农林科技大学培育Cultivation of Northwest University of Agriculture and Forestry Science and Technology承德医学院蚕业研究所培育Cultivated by Sericulture Institute of Chengde Medical University山东省蚕业研究所培育Cultivated by Shandong Sericulture Research Institute河北省遵化县农家品种Varieties in Zunhua County,Hebei Province西北农林科技大学培育Cultivation of Northwest University of Agriculture and Forestry Science and Technology河北省东光县农家品种Varieties in Dongguang County,Hebei Province白桑Morus alba L.玉白色Jade white 1.979±0.1695~61.690±0.141

1.2 仪器与试剂

仪器:CR-400手持色差仪(柯尼卡美能达)、Metrohm 877 Titrino plus 自动电位滴定仪(瑞士万通)、台式高速冷冻离心机(Dynamica Velocity18R)、PAL- 1 数显式糖度计(Atago)、酶标仪(BioTekELX808)、紫外可见分光光度计(岛津UV-2600)、中式冻干机(30ND,新芝)、超声波清洗器(KS-300E型,海曙科生)。气象色谱仪(7890B,安捷伦)、质谱仪(5977A,安捷伦)、色谱柱(HP-5 弹性石英毛细管柱,0.25 mm×30 m,0.25µm)。

试剂:总抗氧化能力(T-AOC)检测试剂盒(A015-2-1 南京建成)、没食子酸标品(110831-201906 中检所)、芦丁标品(100080-201811 中检所)、L-抗坏血酸(中检所)、1,1-二苯基-2-三硝基苯肼(DPPH,Sigma 公司)、3,5-二硝基水杨酸、福林酚(上海国药试剂)。

1.3 方法

1.3.1 桑椹的采集及处理 2020年6月桑椹达到商业成熟期进行手工收获,选取方位相同、高度一致的枝条取样,每个品种采收500 g,采后20 min 内运到实验室,挑选大小、质量、颜色和成熟度基本一致,果形相对均匀的无损伤新鲜果实,迅速进行抗坏血酸、硬度、色度等指标测定,其他样品用液氮速冻后贮存于-80 ℃冰箱,用于其他指标测定,需干样测定的样品进行冷冻干燥,粉碎混匀并过60目筛,于-20 ℃冰箱保存,每个样品做3组平行。

1.3.2 桑椹营养成分测定 可溶性固形物(TSS)采用糖度计测定,随机选取10个外观大小均匀的桑椹果实,捣碎成匀浆,100目滤布过滤后取滤液1 mL,置于糖度计中,读取并记录可溶性糖度计的值;出汁率测定随机取30 粒新鲜桑椹匀浆,4500 r·min-1离心15 min,取上层汁液称量计算出汁率;共沸蒸馏法测定水分含量[13];滴定法测定总酸含量[14];3,5-二硝基水杨酸(DNS)法测定还原糖含量[15];紫外分光光度法测定抗坏血酸含量[16]。总黄酮、总酚采用60%乙醇提取,超声波辅助,超声功率400 W,温度60 ℃,时间30 min,总黄酮含量测定采用Al(NO3)3-NaNO2-NaOH比色法,以芦丁为标准品计[17];总酚含量测定采用Folin-Ciocalteu法,以没食子酸为标准品计;多糖提取采用超声辅助水提,乙醇沉淀后得到多糖,蒽酮-H2SO4比色法测定多糖含量,以葡萄糖为标准品[18]

1.3.3 桑椹香气成分测定 精确称取0.20 g的桑椹冻干粉末,置于4 mL棕色样品瓶。插入固相微萃取柱(Supelco 公司,57328-U),55 ℃水浴萃取30 min,然后将萃取柱取出,插入GC-MS(Agilent 公司,7890B/5977A)质谱仪进样口,250 ℃解析4 min。

GC-MS 分析条件:HP-5 弹性石英毛细管柱(0.25 mm×30 m,0.25µm);载气为氦气,载气流速为1.0 mL·min-1,不分流;进样口温度250 ℃;升温程序(40 ℃为初始温度保持3 min,以5 ℃·min-1的速率升至130 ℃,再以2 ℃·min-1的速率升至190 ℃,以5 ℃·min-1升至240 ℃,保持5 min)。调谐类型EI;全扫描方式;质量扫描范围50~400 u;扫描速度1562 u·s-1;扫描频率4.1,每个萃取条件重复实验3次,质谱数据对照NIST08.L 标准谱库检索各组分,列出匹配度大于80的结果。

1.3.4 桑椹的抗氧化活性评价 DPPH自由基测定采用紫外可见分光光度法测定,以抗坏血酸为对照品计[19];ABTS 微板法测定总抗氧化能力(T-AOC),以抗坏血酸为对照品计。

1.4 数据处理

采用SPSS 23.0 统计软件对实验数据进行显著性分析,p <0.05 为差异显著水平,用SPSS 23.0 软件进行主成分分析(Principal Component Analysis,PCA)。

2 结果与分析

2.1 桑椹营养成分含量测定

2.1.1 桑椹营养成分含量测定 9 个品种当中,蒙桑TSS 含量最高为20.383%,其次是东光大白TSS含量为18.367%,其他7 个品种差异不显著(p >0.05)(表2)。白桑椹的出汁率普遍高于黑色或红色桑椹,桂花出汁率最高,达到76.754%,安椹最低为49.970%。含水率鲁诱7号最低为74.174%,8632和桂花的含水率较高,分别为85.601%、85.105%,品种间差异不显著(p >0.05)。蒙桑总酸含量最高,为21.365 mg·g-1,其次是物45 和鲁诱7 号,3 个白色品种总酸含量显著低于红色或紫黑品种(p <0.05)。还原糖含量蒙桑最高为68.844 mg·g-1,白玉王最低仅为53.825 mg·g-1。9 个品种抗坏血酸含量差异显著(p <0.05),蒙桑含量最高为89.488 mg·g-1,东光大白抗坏血酸含量最低为32.208 mg·g-1

表2 不同品种桑椹营养成分含量
Table 2 Nutrient contents of different mulberry varieties

果桑品种Mulberry varietyw(可溶性固形物)TSS/%出汁率Juice yield/%安椹Anshen节曲Jiequ蒙桑Mengsang 8632物45 Wu45鲁诱7号Luyou7桂花Guihua白玉王Baiyuwang东光大白Dongguangdabai 15.233±1.138 c 13.400±3.205 c 20.383±0.611 a 15.283±0.703 bc 14.517±0.605 c 14.617±0.854 c 15.183±1.297 bc 14.733±0.931 b 18.367±1.558 ab 49.970±0.048 d 55.964±4.882 c 58.338±0.027 c 55.633±4.705 c 56.646±1.928 c 57.324±2.616 c 76.754±0.028 a 69.473±0.019 b 66.940±0.015 b含水率Moisture content/%83.603±0.010 a 84.119±0.752 a 79.081±0.025 a 85.601±0.605 a 83.619±0.622 a 74.174±0.946 a 85.105±0.019 a 84.093±0.015 a 78.050±0.013 a w(总酸)Acid content/(mg·g-1)11.865±0.678 d 13.173±1.049 c 21.365±0.439 a 14.074±0.742 c 18.701±2.209 b 18.698±0.346 b 6.059±0.697 f 7.324±0.124 e 8.248±0.599 e w(还原糖)Reducing sugar content/%63.027±1.260 bc 54.987±2.431 e 68.844±2.878 a 55.549±2.118 de 61.575±0.950 c 54.130±1.246 e 57.706±1.356 d 53.825±3.239 e 64.799±3.599 b w(抗坏血酸)Ascorbic acid content/(mg·100 g-1)46.213±5.553 c 42.821±2.112 c 89.488±5.231 a 42.788±5.864 c 48.634±4.881 c 66.692±1.866 b 43.505±3.896 c 46.253±2.711 c 32.208±3.670 d

2.1.2 桑椹活性成分含量测定 由图1 可知,不同品种桑椹的活性物质含量差异显著(p <0.05)。安椹总黄酮和总酚含量最高,分别达到26.468 mg·g-1和25.190 mg·g-1,显著高于其他品种,其次为物45和鲁诱7号,总黄酮含量为19.420、19.602 mg·g-1,总酚含量为16.696、15.294 mg·g-1。相对于深色品种,白色品种桂花、白玉王、东光大白的总黄酮和总酚含量较低,总黄酮含量分别为3.225、2.297、2.573 mg·g-1,总酚含量分别为4.981、3.732、4.138 mg·g-1,且差异不显著(p >0.05)。各品种多糖的质量比分布范围为4.283~7.453 mg·g-1,含量差异显著(p <0.05)。安椹、节曲、物45、鲁诱7号、白玉王多糖含量显著高于蒙桑、8632 和东光大白,桂花多糖含量最低仅为4.283 mg·g-1

图1 不同品种桑椹总黄酮、总多酚、多糖含量比较
Fig.1 Comparison of the contents of total flavonoids,total polyphenols and polysaccharides in different mulberry varieties

2.2 桑椹抗氧化活性评价

图2 显示,不同品种桑椹抗氧化活性存在显著差异(p <0.05)。从DPPH 清除能力来看安椹最高,达到25.202 mg·g-1 Vc 当量的抗氧化活性,其次是节曲和物45,分别为20.732和18.998 mg·g-1Vc当量的抗氧化活性。3 个白桑椹品种桂花、白玉王和东光大白对DPPH 的清除能力较低,分别为3.518、3.309、2.703 mg·g-1 Vc 当量的抗氧化活性。ABST法定总抗氧化能力(T-AOC),以Vc为对照品计,测得1 g 桑椹具有18.970~51.778 mg·g-1 Vc 当量的抗氧化活性,其中,安椹总抗氧化能力最高,达到51.778 mg·g-1 Vc当量的抗氧化活性,白玉王最低为18.970 mg·g-1。2 种方法测定结果均显示安椹果实的抗氧化能力最强。

图2 不同品种桑椹DPPH 和总抗氧化能力(T-AOC)比较
Fig.2 Comparison of DPPH and total antioxidant capacity(T-AOC)of different mulberry varieties

2.3 桑椹香气成分和组成分析

2.3.1 不同品种桑椹香气成分的鉴定 通过对总离子流图中的各组分相对百分含量进行计算,通过质谱数据库检索各峰的谱图,并结合相对保留时间确定各组分。如图3 所示,各品种桑椹共鉴定出59种香气化合物,9 个品种桑椹香气成分的大类基本一致,主要以酯类、酮类、醛类、醇类、酸类为主,成分种类及含量差异显著(p <0.05)。

安椹样品共鉴定出5 类28 种香气成分,相对含量从高到低依次为酯类(35.71%)、醛类(28.57%)、酸类(14.29%)、醇类(7.14%)、酮类(7.14%),还有少量烷类和炔类。其中,酯类化合物相对含量较高的为己酸乙酯、丁酸乙酯、2-甲基-丁酸乙酯、2-甲基-丙酸乙酯;含有8种醛类物质,以己醛、苯甲醛为主;含有4种酸类物质,以戊酸、己酸、丁酸为主;醇类和酮类物质较少,以1-辛烯-3-醇为主,且相对含量较低。节曲样品共鉴定出27种香气成分,相对含量从高到低依次为醛类(33.33%)、酯类(25.93%)、醇类(11.11%)、酸类(7.41%)、酮类(3.70%),还有少量苯类、烷类和烯类。其中,醛类物质含有9 种成分,以壬醛、己醛为主;酯类物质含有7 种成分,以己酸乙酯为主;醇类、酸类、酮类物质较少且含量较低。蒙桑共鉴定出19 种香气化合物,8632 和物45 样品共鉴定出18种香气成分,鲁诱7号样品共鉴定出14种香气成分,主要成分为醛类物质,分别占总数的47.37%、55.56%、44.44%和50.00%,其他化合物种类较少。4个品种所含的醛类化合物中相对含量较高的均为壬醛、己醛、庚醛。

桂花样品共鉴定出34种香气成分,相对含量从高到低依次为酯类(47.06%)、醛类(20.59%)、酸类(8.82%)、酮类(8.82%)、醇类(5.88%),还有少量烷类和烯类。其中,酯类物质含有14 种成分,己酸乙酯和丁酸乙酯为主;酸类以丁酸为主。白玉王样品共鉴定出33种香气成分,相对含量从高到低依次为醛类(36.36%)、酯类(27.27%)、醇类(9.09%),还有少量酸类和酮类。其中,醛类物质含有12 种成分,以己醛、苯甲醛、戊醛、2-庚烯醛为主,酯类以己酸乙酯为主。东光大白样品共鉴定出36种香气成分,相对含量较高的为酯类(44.44%)和醛类(25.00%),醇类、酮类、酸类种类较少。酯类物质含有16种成分,以己酸乙酯、丁酸,乙酯为主;其他类物质均含量较低。

2.3.2 不同品种桑椹香气成分的比较分析 由图4可知,9个桑椹品种中较为普遍的香气成分有酯类、醇类、醛类、酮类、酸类这5 类。桂花和东光大白酯类物质数量丰富,显著高于其他品种,安椹、节曲和白玉王次之,其他4 个品种较少。醛类物质种类数在所有品种中普遍较多,其中白玉王含醛类物质最多,醇类物质种类数则是节曲、鲁诱7号和白玉王比较丰富。酮类物质在物45 和鲁诱7 号中未检出,在桂花中检出3种,其余均为1~2种。安椹中检出4种酸类物质,其次是蒙桑、桂花和东光大白,各检出3种,其余品种检出较少。其他类中,烷类物质在每个品种中各检出1 种为4-甲基-辛烷,3 个白色桑椹品种均检出少量乙苯和苯乙烯。

图4 不同品种桑椹果实香气成分组成
Fig.4 Aroma components of different mulberry varieties

图5显示,桑椹所含的香气成分中,醛类物质含量占相对比例最高(相对含量20.59%~55.56%),其次为酯类(5.56%~47.06%)、醇类(5.56%~21.43%)、酮类(0.00%~11.11%)和酸类(5.56%~14.29%),而烷类、烯类、杂环类相对含量较少。9个品种桑椹香气物质含量差异均较为显著(p <0.05),桂花和东光大白酯类物质总量显著高于其他品种,而8632和鲁诱7 号显著低于其他品种;各品种中醛类物质含量普遍较高,其中蒙桑最高,白玉王次之,而桂花和东光大白醛类物质含量偏低;醇类、酮类和酸类物质的相对含量品种间差异不显著,在桑椹中虽然含量不高,但也是对桑椹的风味形成起到促进作用的重要物质。

图5 不同品种桑椹果实香气成分相对含量
Fig.5 Relative contents of different mulberry varieties

2.4 桑椹营养和香气成分的PCA分析

以供试的9 个果桑品种作为样本单元,将影响桑椹品质的理化指标、营养成分、活性物质含量和抗氧化能力等29 个指标作为变量进行PCA 主成分分析。根据不同品种桑椹主成分特征值、贡献率、累计贡献率,对桑椹的品质相关指标进行综合评价。

2.4.1 桑椹营养与香气成分的PCA 分析 对桑椹11 个营养相关指标及18 个普遍含有的香气成分进行标准化(Z-score 法)处理,通过SPSS 软件进行PCA 分析,如表3、表4 所示。7 个主成分的累计方差贡献率达到97.187%,说明这7个主成分可以反映原始变量的全部信息。贡献率较大的为PC1 和PC2,PC1 特征值为10.976,其贡献率为37.847%,PC2的特征值为6.592,其贡献率为22.730%。

表3 9 个品种桑椹的主成分方差贡献率
Table 3 Variance contribution rate of first three principal components

主成分Principal component 1234567初始特征值Initial eigenvalue 10.976 6.592 3.520 2.621 2.141 1.306 1.028方差百分比Variance percentage/%37.847 22.730 12.140 9.039 7.383 4.502 3.546累积方差贡献率Cumulative variance contribution rate/%37.847 60.577 72.716 81.755 89.138 93.641 97.187

表4 9 个品种桑椹的主成分载荷矩阵
Table 4 Loading matrix of first three principal components

指标Index己酸乙酯Hexanoic acid ethyl ester庚酸乙酯Ethyl heptanoate丁酸乙酯Butyric acid ethyl ester辛酸乙酯Etheyl Octanoat 2-甲基-戊酸甲酯2-Methylvaleric acid methyl ester 1-辛烯-3-醇1-Octen-3-ol 6-甲基-5-庚烯-2-酮6-methyl-5-heptene-2-one壬醛Pentanal己醛Hexanal庚醛Hexanal苯乙醛Benzeneacetaldehyde苯甲醛Benzaldehyde 3-甲基-丁醛3-methyl butyraldehyde 2-甲基-丁醛2-Methylbutyraldehyde 2-己烯醛2-Hexenal 2-庚烯醛,(Z)-2-Heptenal,(Z)-丁酸Butanoic acid 4-甲基-辛烷Octane,4-methyl-总黄酮含量Total flavonoids content总多酚含量Total polyphenol content多糖含量Polysaccharide content DPPH总抗氧化能力(T-AOC)Total antioxidant capacity出汁率Juice yield含水率Moisture content可溶性固形TSS content总酸含量Total acid content还原糖含量Reducing sugar content维生素C Vitamin C PC1-0.927 0.069-0.900-0.938 0.018 0.631-0.310 0.470 0.635 0.496 0.722 0.307 0.710 0.664 0.070 0.161-0.756 0.568 0.811 0.730 0.793 0.784 0.765-0.885-0.095-0.279 0.719-0.139 0.376 PC2-0.322-0.486-0.364-0.288 0.937 0.376 0.729 0.618 0.587-0.203-0.278-0.132-0.229-0.075 0.865 0.816-0.182-0.029-0.434-0.506-0.059-0.451-0.452 0.142-0.310 0.674 0.292 0.299 0.718 PC3-0.052-0.065-0.067-0.059-0.059 0.421 0.171 0.064 0.135-0.291-0.302 0.844 0.439 0.648 0.265 0.313 0.075-0.361-0.206-0.132 0.093-0.101-0.110 0.143 0.751-0.362-0.540-0.448-0.414 PC4 0.115 0.249 0.095 0.058-0.063 0.208 0.070 0.035 0.429-0.013-0.413 0.262-0.210-0.056 0.118-0.299 0.264-0.661 0.244 0.345-0.238 0.316 0.312-0.290 0.342 0.398 0.086 0.767 0.108 PC5-0.014 0.791 0.046-0.043 0.024 0.020-0.112-0.557 0.113 0.746 0.146 0.091-0.039-0.057 0.378 0.207-0.193-0.199-0.171-0.166 0.339-0.190-0.216 0.197 0.033-0.011 0.083 0.138-0.041 PC6 0.001 0.194 0.183-0.038 0.222-0.130 0.551 0.176 0.069-0.245 0.327-0.056-0.217-0.310 0.124-0.277-0.334-0.181-0.042-0.051 0.260 0.159 0.214-0.033 0.123-0.240-0.089-0.128-0.192 PC7 0.131-0.070 0.070 0.113 0.231 0.471-0.148-0.211 0.064-0.091-0.096 0.168-0.395-0.162 0.050 0.005 0.178 0.189 0.136 0.209 0.293 0.067 0.054 0.128-0.220-0.198-0.210-0.117 0.166

PC1 主要以香气成分和营养成分的影响为主,其中己酸乙酯、丁酸乙酯、辛酸乙酯的载荷权数分别为-0.927、-0.900、-0.938,出汁率、总黄酮含量、多糖含量、DPPH 和总抗氧化能力(T-AOC)的载荷权数分别为-0.885、0.811、0.793、0.784、0.765。PC2 以2-甲基-戊酸甲酯的影响为主,荷载权数为0.937;2-己烯醛、2-庚烯醛、维生素C,荷载权数分别为0.865、0.816、0.718。根据各主成分的贡献率,说明对桑椹品质影响最大的主成分是PC1 和PC2,指标是出汁率、总黄酮含量、多糖含量、DPPH清除率、总抗氧化能力(T-AOC)。

2.4.2 综合主成分分值 根据综合主成分分值的得分公式,计算9 个品种的主成分得分(Y1、Y2、Y3、Y4、Y5、Y6、Y7)和综合主成分值F,见表5。由表5可知,在PC1综合值Y1中,蒙桑的分值最高,达到了1.611分,其次是白玉王和安椹。综合主成分值能较为客观地反映各品种间的品质,9个品种排名如下:蒙桑、白玉王、安椹、8632、鲁诱7 号、物45、节曲、东光大白、桂花。

表5 9 个品种桑椹的综合主成分得分
Table 5 Scores of comprehensive principal components of mulberry of 9 varieties

果桑品种Mulberry varieties安椹Anshen节曲Jiequ蒙桑Mengsang 8632物45 Wu45鲁诱7号Luyou7桂花Guihua白玉Baiyuwang东光大白Dongguangdabai Y1 0.977 0.547 0.300 0.750 0.903 1.169-2.528-0.214-1.905 Y2-0.567-0.212 1.369-0.114-0.594-0.029-0.342 0.578-0.090 Y3 0.104 0.020-0.194 0.265-0.138-0.318 0.007 0.439-0.186 Y4 0.251-0.024 0.171-0.066 0.068-0.275 0.004-0.123-0.006 Y5-0.076-0.106-0.017-0.097 0.239-0.046-0.049 0.127 0.026 Y6-0.029 0.130-0.008-0.059 0.003-0.035-0.028 0.014 0.013 Y7 0.049-0.010-0.009-0.071-0.024 0.036 0.018 0.036-0.025 F值F value 0.709 0.345 1.611 0.608 0.456 0.501-2.917 0.857-2.173排序Rank 3 7 1 4 6 5 9 2 8

3 讨 论

研究结果显示,红色或者黑色桑椹品种在总酸、总黄酮、总多酚含量以及抗氧化能力上显著高于白色桑椹品种,此研究结果与范智义[20]在桑椹提取物中酚类化合物的抗氧化研究结果相同。其中,蒙桑总酸和抗坏血酸含量最高,而安椹总黄酮、总酚等活性物质含量和抗氧化能力显著高于其他品种。已有研究表明,生物体内自由基过多会引发膜脂过氧化,从而引起细胞和组织损伤[21-22]。天然黄酮和酚类化合物能够通过清除自由基、激活体内抗氧化酶系统来减轻氧化应激[23],对于营养代谢类疾病等有较好的预防和缓解作用。笔者在本试验中采用DPPH和ABTS法测定,发现桑椹具有一定的抗氧化活性,且不同品种间差异显著(p <0.05),与冯瀚[19]研究紫黑色桑果品种清除DPPH自由基能力显著大于白色桑果品种的结果一致。

香气成分在构成和影响桑椹鲜食和加工方面具有重要作用,对其呈香物质进行分析,对确定其相应加工制品的香气特征有重要意义。陈娟等[24]分别从大十、红果2 号、红果1 号等桑椹鉴定出挥发性成分,其中己酸乙酯、己醛、壬醛、己醇是桑椹的主体香气成分,本研究结果与之基本一致。不同的是大十、红果系列等品种高级脂肪酸的含量较高,它是一类难挥发的香气前体物质,尤以亚油酸等不饱和脂肪酸为主,可在加工的过程中形成大量潜在的芳香成分。而本研究从9 个品种中共分离鉴定出59种香气化合物成分,则是以主体香气成分较多,包括脂肪醛、脂肪醇、脂肪酸脂等,香气成分也因品种不同而呈显著差异(p <0.05)。可能是品种差异和地域环境差异所导致桑椹品质不同,因此香气成分也有所差异。本研究中鉴定出安椹、节曲、桂花、东光大白和白玉王含有大量的酯类物质且相对含量较高,形成了其独特的香气与风格。一些醇类、酮类和萜烯类物质虽然含量不高,但对桑椹特有香味贡献较大,能否成为关键致香成分还有待进一步考察[25]

4 结 论

蒙桑是北方特有果桑品种,酸甜适口,风味独特;白玉王果型较大且产量高,果肉柔软,果汁多,甜味浓,无酸味;安椹有较强的适应性,活性物质含量和抗氧化能力较高,3 个品种均是鲜食和加工兼用型果桑品种,可在北方地区大面积推广,并可深度开发其桑椹药食用途产品的价值。后续研究可深入探讨桑椹品种采后处理及品质调控,以加强桑椹的高值化的利用。

参考文献References:

[1]邹宇晓,王思远,廖森泰.广东省农业科学院蚕桑资源多元化利用研究进展[J].广东农业科学,2020,47(11):153-161.ZOU Yuxiao,WANG Siyuan,LIAO Sentai. Research progress in diversified utilization of sericultural resources from Guangdong Academy of Agricultural Sciences[J]. Guangdong Agricultural Sciences,2020,47(11):153-161.

[2]CHEN C,YOU L J,HUANG Q,FU X,ZHANG B,LIU R H,LI C. Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic db/db mice[J].Food&Function,2018,9(7):3732-3742.

[3]ZHANG J Q,LI C,HUANG Q,YOU L J,CHEN C,FU X,LIU R H. Comparative study on the physicochemical properties and bioactivities of polysaccharide fractions extracted from Fructus Mori at different temperatures[J]. Food & Function,2019,10(1):410-421.

[4]温靖,徐玉娟,肖更生,吴继军,余元善,陈于陇.6 个果桑品种的桑果加工品质性状测定与分析[J].蚕业科学,2015,41(1):107-111.WEN Jing,XU Yujuan,XIAO Gengsheng,WU Jijun,YU Yuanshan,CHEN Yulong. Determination and analysis of processing characteristics of six mulberry varieties for fruit use[J]. Acta Sericologica Sinica,2015,41(1):107-111.

[5]JIAO Y K,WANG X Q,JIANG X,KONG F S,WANG S M,YAN C Y. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats[J]. Journal of Ethnopharmacology,2017,199:119-127.

[6]SAMIRA Y,MOHAMMAD H,HOSSEIN A M.The antidiabetic potential of Black Mulberry extract-enriched Pasta through inhibition of enzymes and glycemic index[J]. Plant Foods for Human Nutrition,2019,74(1):149-155.

[7]WANG C Y,CHENG W H,BAI S W,YE L,DU J,ZHONG M K,LIU J,ZHAO R,SHEN B.White mulberry fruit polysaccharides enhance endothelial nitric oxide production to relax arteries in vitro and reduce blood pressure in vivo[J].Biomedicine&Pharmacotherapy,2019,116:109022.

[8]JIANG Y,DAI M,NIE W J,YANG X R,ZENG X C.Effects of the ethanol extract of black mulberry (Morus nigra L.) fruit on experimental atherosclerosis in rats[J]. Journal of Ethnopharmacology,2017,200(1):228-235.

[9]何雪梅,孙健,梁贵秋,邱长玉,李杰民,李丽,李昌宝,盛金凤,刘国明,零东宁,唐雅园.广西地区13 个主栽桑品种的桑椹营养与药用品质综合评价[J]. 食品科学,2018,39(10):250-256.HE Xuemei,SUN Jian,LIANG Guiqiu,QIU Changyu,LI Jiemin,LI Li,LI Changbao,SHENG Jinfeng,LIU Guoming,LING Dongning,TANG Yayuan.Nutritional and medicinal quality of mulberry fruit from 13 main varieties grown in Guangxi[J].Food Science,2018,39(10):250-256.

[10]董强,白静,岳攀,李阳,国锦琳.桑椹多糖的提取工艺优化及含量研究[J].成都中医药大学学报,2021,44(3):64-67.DONG Qiang,BAI Jing,YUE Pan,LI Yang,GUO Jinlin. Study on extraction technology and content of polysaccharide from mori fructus[J]. Journal of Chengdu University of traditional Chinese Medicine,2021,44(3):64-67..

[11]黄盖群,佟万红,危玲,殷浩,刘刚,郑继川,姚永权,李永远,易嘉熙.28 份果桑品种资源主要经济性状的主成分分析[J].蚕业科学,2014,40(4):601-606.HUANG Gaiqun,TONG Wanhong,WEI Ling,YIN Hao,LIU Gang,ZHENG Jichuan,YAO Yongquan,LI Yongyuan,YI Jiaxi.Principal component analysis for major economic characteristics of 28 fruit Mul-berry cultivars[J]. Acta Sericologica Sinica,2014,40(4):601-606.

[12]HU H L,SHEN W B,LI P X. Effects of hydrogen sulphide on quality and antioxidant capacity of mulberry fruit[J].International Journal of Food Science&Technology,2014,49(2):399-409.

[13]夏英杰.中药桑椹质量控制的研究[D].南宁:广西中医药大学,2013.XIA Yingjie.Study on the method of quality control of traditional Chinese Medicine Mulberry[D]. Nanning:Guangxi University of Traditional Chinese Medicine,2013.

[14]吴晓红,陈宝宏,李小华.柑橘类水果中总酸与总糖的测定[J].食品研究与开发,2012(9):144-146.WU Xiaohong,CHEN Baohong,LI Xiaohua. Determination of total acids and total sugar in Citrus fruits[J]. Food Research and Development,2012(9):144-146.

[15]李志霞,聂继云,闫震,李静,匡立学,沈友明.响应面法对3,5-二硝基水杨酸比色法测定水果中还原糖含量条件的优化[J].分析测试学报,2016,35(10):1283-1288.LI Zhixia,NIE Jiyun,YAN Zhen,LI Jing,KUANG Lixue,SHEN Youming.Optimization of 3,5-Dinitrosalicylic acid colorimetry determination conditions of reducing sugar in fruits by response surface method[J]. Journal of Instrumental Analysis,2016,35(10):1283-1288.

[16]王海佳.紫外分光光度法研究维生素C 的稳定性及蔬果和果汁中含量的测定[D].太原:山西医科大学,2016.WANG Haijia. Study the stability of Vitamin C by ultraviolet spectrophotometry and determination of the contents in several kinds of fruits,vegetables and juices[D].Taiyuan:Shanxi Medical University,2016.

[17]崔京燕,杨静,桑鑫燕,韩红娟,刘淑珍,樊彦玲,刘永平,赵京帅.桑椹花青素的提取及其与总黄酮的比较研究[J].食品研究与开发,2018,39(15):53-60.CUI Jingyan,YANG Jing,SANG Xinyan,HAN Hongjuan,LIU Shuzhen,FAN Yanling,LIU Yongping,ZHAO Jingshuai. Extraction of mulberry anthocyanins and comparative study of its anthocyanins and total flavonoids[J]. Food Research and Development,2018,39(15):53-60.

[18]祁银燕,刘桂英.柴达木盆地野生与栽植黑果枸杞中花青素、多糖和多酚含量[J].北方园艺,2018(3):145-149.QI Yinyan,LIU Guiying. Contents of anthocyanins,polysaccharides and polyphenols in wild and transplant of Lycium ruthenicum Murr. of Qaidam Basin[J]. Northern Horticulture,2018(3):145-149.

[19]冯瀚.桑椹主要活性成分含量测定与抗氧化作用分析[D].镇江:江苏科技大学,2015.FENG Han. Main active component content and antioxidant effect analysis of mulberry fruit[D]. Zhenjiang:Jiangsu University of Science and Technology,2015.

[20]范智义,李晓琳,李巨秀.桑椹提取物中酚类化合物的抗氧化及抗糖基化活性分析[J].食品科学,2016,37(17):19-26.FAN Zhiyi,LI Xiaolin,LI Juxiu. Antioxidant and antiglycation activities of phenolic compounds extracted from mulberry fruits[J].Food Science,2016,37(17):19-26.

[21]ZHANG J Q,CHAO L,QIANG H,YOU L J,CHEN C,FU X,LIU R H. Comparative study on the physicochemical properties and bioactivities of polysaccharide fractions extracted from Fructus Mori at different temperatures[J]. Food & Function,2019,10(1):410-421.

[22]YANG X L,YANG L,ZHENG H Y.Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats[J]. Food & Chemical Toxicology,2010,48(8-9):2374-2379.

[23]游庭活.桑椹多酚类化合物抗氧化及延缓衰老作用研究[D].广州:广东药学院,2015.YOU Tinghuo. Study of antioxidant and anti-aging activity of polyphenol compounds in mulberry[D]. Guangzhou:Guangdong Pharmaceutical University,2015

[24]陈娟,阚建全,杨蓉生.不同品种桑椹香气成分的GC-MS 分析[J].食品科学,2010(18):239-243.CHEN Juan,KAN Jianquan,YANG Rongsheng.Gas chromatography-mass spectrometric analysis of aroma components in mulberry from different varieties[J]. Food Science,2010(18):239-243.

[25]李宇宇,特日格乐,格根图,张玉兰,马千鹏,张连义,都帅,降晓伟,贾玉山.天然牧草挥发性成分的顶空固相微萃取-气质联用测定方法研究[J].中国草地学报,2019,41(6):123-131.LI Yuyu,Terigele,Gngentu,ZHANG Yulan,MA Qianpeng,ZHANG Lianyi,DU Shuai,JIANG Xiaowei,JIA Yushan.Determination on volatile components of natural forage by headspace solid phase microextraction-gas mass spectrometry[J]. Chinese Journal of Grassland,2019,41(6):123-131.

Evaluation of nutrition, aroma components and antioxidant activity of mulberry fruits from nine varieties

JIA Manli1,2,LI Na1,2,WANG Binbin1,2,FAN Wei1,2,XIAAihua1,LI Jisheng1,2*
(1Hebei Universities R & D Centre for Sericulture and Specialty Enabling Technologies, Chengde 067000, Hebei, China;2Institute of Sericulture,Chengde Medical University,Chengde 067000,Hebei,China)

Abstract:【Objective】Mulberry fruit (Fructus Mori) is one of the first batch of medicinal and edible homologous agricultural products approved by the Ministry of Health. It has high nutritional value and has extremely significant effect on improving memory,reducing blood lipids,regulating intestinal flora,and relieving fatigue. In recent years, the production and consumption of fruit mulberries have increased rapidly, and its processed products have also increased apparentally. Therefore, selection of high-yield and high-quality fruit mulberry varieties is very important for the development of the fruit mulberry industry by accurate evaluating the fruit properties, nutrition, aroma components and antioxidant capacity of the existing fruit mulberry varieties.【Methods】The 9 fruit mulberry varieties named Anshen, Qusang, Mengsang, 8632,Wu45, Luyou 7, Guihua, Baiyuwang, and Dongguang Dabai in Hebei Province were used as experimental materials, ultraviolet spectrophotometry, solid-phase microextraction combined with gas chromatography-mass spectrometry and enzyme-labeled method were employed to detect the nutrition,aroma components and antioxidant capacity of the each variety,and SPSS 23.0 software was used to perform difference analysis and principal component analysis of the measure-ment results (principal component analysis, PCA).【Results】The juice yield of the white mulberries was generally higher than that of the black or red mulberries.The juice yield of Guihua was the highest(76.75%),and the juice yield of Anshen was the lowest(49.970%).There was no significant difference in the water content among the 9 varieties(p >0.05).The soluble solid substance(TSS) content of all verieties distributed in 13%-20%, the veriety Mengsang had the highest content in the contents of the soluble solid substance(20.383%).the ascorbic acid(89.488 mg·g-1),the total acid(21.365 mg·g-1)and reducing sugar c(68.844 mg·g-1).The hardness(4.503 N·cm-2),the total flavonoid content(26.468 mg·g-1),the total polyphenol content (23.097 mg·g-1), the DPPH removal capacity (25.202 mg·g-1 Vc equivalent) and the ABTS removal capacity ( 51.778 mg·g-1 Vc equivalent) of Anshenare were significantly higher than those of the other varieties. The active ingredient content and antioxidant activity of the white varieties Guihua, Baiyuwang and Dongguang Dabai were significantly lower than those of the purple-black varieties.A total of 59 aroma compounds were identified from various mulberry varieties,and the aroma components were basically the same in big category,mainly including esters,ketones,aldehydes, and alcoholsand acids. The types and contents of the components were significantly different(p <0.05).The relative contents of esters, aldehydes, acids, alcohols, and ketones in descending order were 35.71%,28.57%,14.29%,7.14%and 7.14%,respectively.The variety with hiest content of aroma substances was Dongguang Dabai (36 kinds), followed by Guihua (34 kinds), Baiyuwang (33 kinds),Anshen(28 kinds),and Qusang(27 kinds).The contents of aroma substances of the remaining 4 varieties were very low.The PCA results showed that the cumulative variance contribution rate of the 7 principal components reached 97.187%,and the larger contribution rates were PC1 and PC2.The characteristic value of PC1 was 10.976, and its contribution rate was 37.847%. The characteristic value of PC2 was 6.592, and its contribution rate was 22.730%. The comprehensive principal component value F showed that Mengsang had the highest score,1.611 points,followed by Baiyuwang and Anshen.【Conclusion】There were significant differences in nutrition, aroma components and antioxidant capacity of the different varieties of mulberry(p <0.05).Mengsang,Baiyuwang and Anshen had the best comprehensive quality Baiyuwang had large fruit shape and high yield,low acidity and sweet taste;Mongolian mulberry was sweet and sour, but the fruit shape was small and the yield was low;Anshen was a new variety with significantly higher active substances content and antioxidant capacity than other varieties.These three varieties could be used as excellent germplasm resources for in-depth development for different perspectives. Follow-up research should further explore the related factors affecting mulberry quality,and post-harvest treatment and quality control as well.

Key words:Mulberry;Nutrient components;Aroma components;Active components;Principal component analysis

中图分类号:S663.2

文献标志码:A

文章编号:1009-9980(2022)02-0221-11

DOI:10.13925/j.cnki.gsxb.20210279

收稿日期:2021-07-01

接受日期:2021-11-10

资助项目:河北省“三三三”人才工程培养资助项目(30103120001);河北省教育厅课题(QN2019042);河北省科技厅“技术创新引导专项—科技工作会商”;河北省科技厅课题(19226373D,20326336D)

作者简介:贾漫丽,女,助理研究员,硕士,研究方向为桑树资源评价与利用。Tel:18103141065,E-mail:94789458@qq.com

*通信作者Author for correspondence.Tel:18932877129,E-mail:jshlee@163.com