5个荔枝品种的品质及挥发性风味比较分析

孟祥春,黄泽鹏,肖志丹,凡 超,向 旭

(广东省农业科学院果树研究所·农业农村部南亚热带果树生物学与遗传资源利用重点实验室·广东省热带亚热带果树研究重点实验室,广州 510640)

摘 要:【目的】对5个荔枝品种的品质和风味进行鉴定,为品质评价及栽培育种提供理论依据。【方法】理化和液相色谱技术测定糖、酸、维生素含量等品质指标,气相离子迁移谱检测挥发性风味化合物组分。【结果】4个优质品种仙进奉(Xianjinfeng,XJF)、水晶球(Shuijingqiu,SJQ)、佛绿(Folü,FL)和冰荔(Bingli,BL)的平均总可溶性固形物含量差异不大,均比传统品种怀枝(Huaizhi,HZ)略高,而XJF的蔗糖、葡萄糖和果糖含量比较均等,HZ和其他3个优质品种以葡萄糖和果糖为主。可滴定总酸与苹果酸含量的高低依次为XJF>HZ>SJQ>BL>FL。XJF和FL的维生素C含量高于HZ,而SJQ和BL低于HZ。与HZ相比,XJF、SJQ和BL的挥发性风味物质具有明显独立的特征峰区域,聚类分析显示,BL和HZ的总挥发性风味差异最小,XJF次之,而FL和SJQ与HZ差异最大。【结论】4个优质荔枝的品质指标与HZ相比有不同的差异,而具有品种特异性的挥发性风味组分和含量差异最为显著。糖、酸及挥发性风味物质的组分和含量可作为荔枝优质品种的品质评价指标。

关键词:荔枝;糖;有机酸;挥发性风味;风味指纹图谱

荔枝(Litchi chinensis ssp. chinensis)属无患子科荔枝属(Litchi chinensis Sonn.)中的1 个亚种,起源于中国,是我国最具地方特色的水果之一。中国的荔枝种植面积和产量均居世界之首,占全世界的70%以上,种质资源也最丰富[1-3]。长期以来的主要栽培品种有怀枝、黑叶、白糖罂、糯米糍、桂味、白蜡等。近十多年来,荔枝栽培育种专家选育出了一大批优新品种[4-6],其中仙进奉(Xianjinfeng,XJF)、水晶球(Shuijingqiu,SJQ)、佛绿(Folü,FL)和冰荔(Bingli,BL)是目前在广东地区主要推广种植的优质品种。XJF(粤审果2011009)果实长歪心形,有蜜香味,果皮鲜红较厚,平均单果质量26.5 g,可食率78%~82%,焦核率高达80%~90%,裂果少、耐贮藏[7];BL(粤审果20180001)果实短心脏形,清甜带蜜味,平均单果质量20.7 g,可食率75.3%,具焦核、不裂果、丰产稳产等优异性状[8];FL 果皮黄绿色,具果大核小、肉质厚脆、清甜、有挂绿味等特性;SJQ果实近心形或近圆形,清甜带微香,中等大小,果皮浅红色,龟裂片较疏。怀枝(Huaizhi,HZ)是传统栽培品种之一,7月上旬成熟,果实近圆球形,中等大小,果皮暗红色,核大味偏酸,较适宜加工荔枝干。同HZ 相比,上述4 个优质品种均为中晚熟,且具果色更亮、小核或焦核、肉质优、风味特殊等优越性。广州市增城区为粤中晚熟荔枝优势区,近年来通过实施荔枝品种结构调整大力发展种植上述4个优质荔枝品种。

笔者以上述荔枝品种及HZ 为试材,通过理化检测和液相色谱技术分析果实品质因子糖、酸、维生素C(Vc)、总酚和总黄酮含量,并首次采用气相离子迁移谱(Gas Chromatography-Ion Mobility Spectrometry,GC-IMS)技术鉴定其主要风味组分及差异,旨在为进一步区域化推广种植、高质量生产及确定采收成熟度和品质等提供科学参考依据。

1 材料和方法

1.1 试材、取样与仪器

荔枝品种为怀枝(HZ)、仙进奉(XJF)、水晶球(SJQ)、佛绿(FL)、冰荔(BL),种植于广州市增城区银场村山地荔枝园。每年(2019、2020、2021年)7月上中旬达到品种最佳成熟度时(谢花后105~120 d)采摘,每个生物学重复随机取3 株树冠外围四周果实,混合后挑选大小一致、无机械伤和病虫斑的果实,装入已备好的加冰块泡沫箱中立即运至实验室。每个生物学重复随机取30 个果的1/4 果肉,混匀后液氮速冻,并置于超低温冰箱保存备用。理化检测分析试剂均为分析纯,购于上海化学试剂有限公司。液相色谱有机酸标样均为色谱纯,购自北京谱析科技有限公司。糖、总酚和总黄酮生化检测试剂盒购自苏州格锐思生物科技有限公司。

使用仪器有电子分析天平(JJ-1000 型)、FlavourSpec®风味分析仪(德国G.A.S)、气相色谱多毛细管柱(FS-SE-54-CB-1,15 m,ID:0.53 mm)、PAL-1型数显手持糖度计(日本ATAGO)、岛津LC-20AT分光光度计、岛津紫外检测器SPD-20A、LC-100 高效液相色谱仪、SpectraMax iD3 多功能酶标仪、SIGMA3K15台式高速冷冻离心机。

1.2 果肉总可溶性固形物(TSS)及葡萄糖、果糖和蔗糖含量分析

新鲜荔枝去皮、去核后打浆,果浆以8000 r·min-1转速离心后过滤,留上清液备用。用手持糖度计测定TSS,上清液稀释10倍后采用己糖激酶法试剂盒(微板96 样)测定葡萄糖-果糖含量,采用蔗糖含量检测试剂盒(微板法48样)测定蔗糖含量,操作均按说明书进行。

1.3 果肉中可滴定酸及分类有机酸含量的分析

可滴定酸含量的测定:取10 mL 已制备好的果浆上清液,滴入2~3 滴酚酞试剂,用0.1 mol·L-1的NaOH滴定,终点为溶液粉红色。

参照乔方等[9]的方法,采用HPLC法测定有机酸含量。前处理方法:精确称取0.2 g样本,加入1.5 mL 80%(φ)甲醇充分研磨,45 ℃超声提取30 min,12 000 r·min-1 4 ℃离心10 min 后取上清液,用氮吹仪吹干,加1 mL流动相溶液涡旋震荡溶解,0.45 μm膜过滤后待测。C18 反相色谱柱(5 μm×4.6 mm×150 mm),流动相为0.1%磷酸水溶液,流速0.7 mL·min-1,进样量10 μL,运行时间15 min,柱温30 ℃,紫外检测波长210 nm。在测定过程中先进单标,以确定每种物质的保留时间,再进混标,分别使用3种不同浓度的混标进样,作出每种物质的外标曲线。试验测定3次取平均值。

1.4 果肉中维生素C含量的高效液相法测定

取0.2 g 荔枝果肉样品用0.2%草酸超声提取维生素C,参照Huang等[10]的方法,用高效液相法进行维生素C 含量测定。分析柱用C18 反相色谱柱(5 μm×4.6 mm×250 mm),流动相为V 甲醇V 磷酸氢二钾=10∶90,流速1 mL·min-1,进样量10 μL,柱温35 ℃,运行时间为10 min,在245 nm 下用紫外检测器检测,使用外标曲线法进行定量。

1.5 果肉中总酚及总黄酮含量的分析

总酚含量的测定采用福林酚法总酚含量测定试剂盒(G0117W,微板法96),总黄酮含量的测定采用NaNO2-Al(NO33-NaOH 显色法总黄酮含量测定试剂盒(G0118W,微板法96样),操作均按说明书进行。

1.6 GC-IMS检测挥发性风味化合物

用FlavourSpec®风味分析仪检测挥发性风味化合物。取3 g荔枝果肉样品置于20 mL顶空瓶中,加热后取顶部空气进样检测。色谱柱类型MXT-5,长15 m,内径0.53 mm,膜厚1 μm。顶空孵化温度50 ℃、孵化时间15 min,孵化转速500 r·min-1。载气为高纯氮气(≥99%),柱温60 ℃、运行时间20 min,漂移气流速150 mL·min-1,载气流速梯度2 mL·min-1保持2 min,在20 min内线性增至100 mL·min-1。顶空进样针温度55 ℃、进样体积400 μL。

1.7 数据处理

所有试验均3 次重复,结果取平均值,用Excel软件统计试验结果及作图,结果采用(平均值±标准差)表示,并采用LSD检验进行数据的显著性分析,p<0.05表示差异显著,p <0.01表示差异极显著。

GC-IMS检测结果使用仪器配套的分析软件和插件,使用VOCal 插件,利用软件内置的NIST 数据库和IMS 数据库对特征风味物质进行定性定量分析,利用Gallery Plot插件对比不同样品之间的挥发性有机物指纹图谱,使用Dynamic PCA 插件对样品进行聚类和相似度分析。

2 结果与分析

2.1 果肉TSS及葡萄糖、果糖和蔗糖含量

如图1所示,怀枝(HZ)的TSS为17.5%,仙进奉(XJF)为18.4%,水晶球(SJQ)、佛绿(FL)和冰荔(BL)的TSS 为19%~20%,4 个优质品种的TSS 均略高于HZ,但各品种间的TSS绝对差值不明显(图1-A)。

图1 5 个荔枝品种果肉中的总可溶性固形物(A)及糖组分(B)含量
Fig.1 Comparative analysis of TSS(A)and sugar(B)component content in the flesh of five litchi cultivars

图1-B 显示,XJF 的葡萄糖和果糖含量(w,后同)分别比HZ低24.5%和14.5%,而蔗糖含量(52.27 mg·g-1)是HZ 的1.91 倍;SJQ 的葡萄糖和果糖含量分别比HZ高35.1%和40.7%,FL的葡萄糖和果糖含量分别比HZ 高22.7%和25.3%。蔗糖含量方面,SJQ 与HZ 的水平相当,而FL 比HZ 高51.4%;BL 的葡萄糖含量与HZ 在同一水平,果糖和蔗糖含量分别是HZ的1.3和1.46倍。

对比各品种的糖组分及相对含量可以看出,SJQ、FL和BL与HZ类似,以葡萄糖和果糖为主,蔗糖占比则相对较低,是3 种糖总含量的10%~16%。而XJF 的蔗糖含量高于葡萄糖和果糖,且每种糖组分的占比比较均等。

2.2 果肉中可滴定酸及分类有机酸的含量

5个荔枝品种有机酸含量水平如图2所示。5个品种的苹果酸含量最高,是柠檬酸和琥珀酸的几倍至十几倍,且各品种间的苹果酸含量差异明显。HZ的苹果酸含量最高,XJF 与HZ 在同一水平,大于2900 µg·g-1,SJQ 和BL 的分别比HZ 低30.7%和25.1%,而FL 中苹果酸含量更低,小于2000µg·g-1,仅是HZ的54.5%(图2-A)。各品种总可滴定酸含量的高低顺序与苹果酸含量的差异顺序一致(图2-B)。而4 个优质品种的柠檬酸含量均高于HZ,XJF和BL 中含量最高,在同一显著水平,其次为SJQ 和FL。而SJQ、FL和BL的琥珀酸含量同HZ相比差值不大,均在100~200µg·g-1之间,XJF含量最低,低于100µg·g-1(图2-A)。结果显示5个荔枝品种的主要有机酸是苹果酸,但4 个优质荔枝品种的苹果酸及可滴定总酸含量均不同程度地低于HZ。

图2 5 个荔枝品种果肉中的有机酸(A)及总可滴定酸(B)含量
Fig.2 Comparative analysis of organic acid and TA content in the flesh of five litchi cultivars

2.3 果肉中维生素C含量的比较

荔枝是维生素C 的一种很好来源,荔枝中的平均维生素C 含量(w,后同)为276 μg·g-1 [11]。从图3可知,5 个荔枝品种中的维生素C 含量范围为130~300µg·g-1,不同品种间差异显著(p<0.01)。HZ 的维生素C含量为211.4µg·g-1,XJF和FL高于HZ,分别为254.3 和299.8µg·g-1,而SJQ 和BL 的维生素C含量分别为153.8µg·g-1和133.5µg·g-1,比HZ 分别低27.3%和36.8%。

图3 5 个荔枝品种果肉中的维生素C 含量
Fig.3 Comparative analysis of vitamin C content in flesh of the five litchi cultivars

2.4 果肉中总酚及总黄酮含量的比较

5个荔枝品种果肉中的总酚含量存在显著差异(p<0.01),4 个优质品种的总酚含量均不同程度地高于HZ,FL 和SJQ 中的总酚含量(w,后同)相对较高,大于2.0 mg·g-1,XJF 和BL 的总酚含量水平为1.5 mg·g-1(图4)。而5 个品种的总黄酮含量均较低,在0.2~0.4 mg·g-1之间变化,不同品种间的绝对值差异不大。

图4 5 个荔枝品种果肉中的总酚和总黄酮含量比较
Fig.4 Comparative analysis of total phenols and flavonoid content in flesh of the five litchi cultivars

2.5 挥发性风味化合物的GC-IMS定性分析

采用GC-IMS 挥发性风味物质分析技术,利用现有的NIST 2014数据库,从5个荔枝品种中共鉴定出53 种挥发性风味物质,各物质的名称、保留指数和迁移时间等见表1。表1 显示有11 种醛类(其中庚醛和己醛存在单体和二聚体)、10种醇类(其中1-己醇、E-2-己烯醇、Z-2-戊烯醇和乙醇存在单体和二聚体)、8 种酯类(其中乙酸异戊酯存在单体和二聚体)、7种萜烯类(其中柠檬烯存在单体和二聚体)、6种酮类(其中3-辛酮存在单体和二聚体)、1 种呋喃(2-乙基呋喃)、1 种酸(丙酸),另外,还检测出22 种未定性的挥发性风味化合物(图5)。

表1 5 个荔枝品种果肉中的挥发性风味化合物定性分析
Table 1 Volatiles flavor compounds qualitative identified by GC-IMS in flesh of the five litchi cultivars

注:M 和D 分别代表同一种化合物的单体和二聚体;迁移时间是对RIP 峰进行了归一化处理的,归一化的方法是将实际的迁移时间除以RIP 的出峰时间。
Note: M and D represent monomer and dimer of the same compound respectively; drift time is the relative of RIP(Reactant Ion Peak), i.e.actual drift time divided by the time of RIP peak.

编号No.迁移时间Drift time/ms化合物名称Compound name CAS编号Registry number保留指数Retention index保留时间Retention time/s 1 2 3 4 5 6 7 8 9 1.482 88 1.220 81 1.265 34 1.216 99 1.309 86 1.714 15 1.209 91 1.215 93 1.303 78 1.216 46 1.216 46 1.156 20 1.325 83 1.641 05 1.327 96 1.694 29 1.179 94 1.516 45 1.258 74 1.566 50 1.090 49 1.358 84 1.482 69 1.152 17 1.217 13 1.351 82 1.336 54 1.051 87 1.134 02 1.086 83 1.216 84 1.218 48 1.148 47 1.303 23 1.750 04 1.117 88 1.436 43 1.330 48 1.411 91 1.256 44 1.210 78 1.109 62 1.193 46 1.401 19 1.309 84 1.266 97 1.280 81 1.448 61 1.406 66 1.409 95 1.648 45 1.216 60 1.235 35 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53壬醛Nonanal芳樟醇Linalool 2,4–辛二烯醛(E,E)-2,4-Octadienal萜品油烯/异松油烯Terpinolene 3-辛酮(M)3-Octanone(M)3-辛酮(D)3-Octanone(D)β-罗勒烯β-Ocimene柠檬烯(M)Limonene(M)柠檬烯(D)Limonene(D)月桂烯Myrcene β-蒎烯β-Pinene 1-辛烯-3-醇1-Octen-3-ol 1-己醇(M)1-Hexanol(M)1-已醇(D)1-Hexanol(D)庚醛(M)Heptanal(M)庚醛(D)Heptanal(D)E-2-己烯醇(M)(E)-2-Hexenol(M)E-2-己烯醇(D)(E)-2-Hexenol(D)己醛(M)Hexanal(M)己醛(D)Hexanal(D)Z-2-戊烯醇(M)(Z)-2-Pentenol(M)Z-2-戊烯醇(D)(Z)-2-Pentenol(D)异戊醇Isopentanol丙酸乙酯(M)Ethyl propanoate(M)2,3-戊二酮2,3-Pentanedione 3-戊酮3-Pentanone乙酸乙酯Ethyl Acetate乙醇(M)Ethanol(M)乙醇(D)Ethanol(D)3-甲硫基丙醛3-(Methylthio)propanal乙酸龙脑酯Bornyl acetate α-松油醇α-Terpineol环己酮Cyclohexanone乙酸异戊酯(M)Isoamyl acetate(M)乙酸异戊酯(D)Isoamyl acetate(D)丙酮Acetone戊醛Pentanal香茅醇Citronellol辛醛Octanal(E)-2-庚烯醛(E)-2-Heptenal茨烯Camphene 2-环己烯-1-酮2-Cyclohexen-1-one 2-丙醇2-Propanol 2-甲基丁醛2-Methyl-butanal 2-乙基呋喃2-Ethylfuran丙酸Propanoic acid甲基丙醛Methylpropanal丙酸乙酯(D)Ethyl propanoate(D)γ-壬内酯γ-Nonalactone E-2-壬烯醛(E)-2-Nonenal 2-甲基丁酸乙酯Ethyl 2-methylbutanoate α-蒎烯α-Pinene乙酸丁酯Butyl acetate C124196 C78706 C30361285 C586629 C106683 C106683 C13877913 C138863 C138863 C123353 C127913 C3391864 C111273 C111273 C111717 C111717 C928950 C928950 C66251 C66251 C1576950 C1576950 C123513 C105373 C600146 C96220 C141786 C64175 C64175 C3268493 C76493 C98555 C108941 C123922 C123922 C67641 C110623 C106229 C124130 C18829555 C79925 C930687 C67630 C96173 C3208160 C79094 C78842 C105373 C104610 C18829566 C7452791 C80568 C123864 1 111.0 1 103.6 1 101.3 1 085.5 991.9 991.9 1 047.1 1 025.7 1 026.7 997.7 975.4 987.0 874.0 874.7 903.3 903.3 851.9 849.8 790.5 790.5 781.6 779.8 724.6 701.7 699.2 683.8 575.5 402.0 405.4 908.7 1 322.5 1 271.4 888.8 877.7 877.7 464.9 688.9 1 222.9 1 008.5 959.3 948.4 894.1 511.0 642.0 671.5 737.2 518.6 701.1 1 430.8 1 193.0 816.6 932.9 803.6 505.384 494.682 491.337 468.594 336.817 336.865 413.474 382.644 384.045 342.371 323.128 332.750 245.020 245.366 263.350 263.350 233.952 232.915 203.171 203.171 199.021 198.329 177.116 168.325 167.369 162.209 137.746 98.566 99.331 267.866 809.541 736.041 252.458 246.884 246.884 112.758 163.404 666.307 357.905 309.766 300.782 255.745 123.181 152.768 159.440 181.968 124.891 168.089 965.192 623.287 216.237 287.892 209.756

图5 5 个荔枝品种果肉中的挥发性风味化合物变化的Gallery Plot 指纹图谱
Fig.5 The Gallery Plotfingerprint of volatile flavor components in flesh of the five litchi cultivars

每一行代表每个样品中选取的全部化合物信号峰,每一列代表同一挥发性化合物在不同品种的3个重复间的信号峰。X轴为已鉴定的挥发性化合物名称,与表2中物质一一对应,数字编号是未知化合物。部分物质后面的M和D分别指同一个物质的单体和二聚体,Y轴为样品代号。颜色代表物质的浓度,白色表示浓度较低,红色表示浓度较高,颜色越深表示浓度越大。
Each row represent signal peaks of all the compound selected from each sample, and each column represents signal peak of the same volatile compound in the three replicates of different varieties.X-axis is the name of all the identified volatile compounds,corresponding to the compounds in Table 2,and the number represent unknown compounds.M and D after some compound represent its monomer and dimer respectively,and Y-axis is the sample code.Color indicates concentration of the substance,white indicates a lower concentration,red indicates a higher concentration,and the darker the color,the greater the concentration.

2.6 5个荔枝品种挥发性风味化合物指纹图谱对比

为了比较各荔枝品种挥发性风味化合物的差异,使用GalleryPlot插件将各品种的GC-IMS二维谱图中所有的待分析峰自动生成指纹图谱。由图5可知,所有被检测出的挥发性物质分布在不同区域,XJF、SJQ 和BL 同HZ 一样,有明显独立的特征峰区域,FL没有明显集中的特征峰区域,但从颜色深浅上判断在FL中1-已醇、2,3-戊二酮、3-辛酮和未知物6号和5号含量较高,其他鉴定出的已知和未知的风味化合物在FL 中的相对含量极低或未检测到(黑色)。4个优质品种与HZ共有的挥发性风味化合物(图6中黄色竖框)有已知的4种(乙酸丁酯、丙酮、2,3-戊二酮、乙醇)和未知物质3种(1、4、6)。

图6 5 个荔枝品种果肉中挥发性风味组分的PCA 分析
Fig.6 The PCA analysis of volatile flavor component in the flesh of five litchi cultivars

HZ、XJF、SJQ 和BL 的挥发性风味特征峰所包含的化合物组成见表2。XJF、SJQ 和BL 同HZ 一样,各自有不同的特征性挥发性风味化合物十多种,且在所包含的主要特征风味物质中,已知的化合物完全不同,未知的化合物只有XJF 的2 种(14 和21)与HZ相同,其他的全部不同,说明各品种间的挥发性风味和组分差异较大。

表2 HZ、XJF、SJQ 和BL 的特征性挥发性风味化合物组分
Table 2 Characteristic volatile flavor compounds of HZ,XJF,SJQ and BL

品种Cultivar HZ Unidentified volatile flavor compound未知的挥发性风味化合物5种5kinds 3、12、13、14、21 XJF 6种6kinds 14、21、1、2、15、16 SJQ 6种6kinds 4、7、17、19、20、22 BL Component compound of volatile flavor 特征性挥发性风味物质组成已知的挥发性风味化合物Identified volatile flavor compound 12种,绿色横框从左至右:2,4–辛二烯醛、萜品油烯、α-松油醇、柠檬烯、月桂烯、茨烯、α-蒎烯、乙酸龙脑酯、香茅醇、(E)-2-庚烯醛、γ-壬内酯、3-辛酮12 kinds,the green box from left to right:(E,E)-2,4-Octadienal,Terpinolene,α-Terpineol,Limonene,Myrcene,Camphene,α-Pinene,Bornylacetate,Citronellol,(E)-2-Heptenal,γ-Nonalactone,3-Octanone 10种,粉色横框从左至右:壬醛、辛醛、庚醛、己醛、芳樟醇、β-蒎烯、E-2-己烯醇、2-环己烯-1-酮、2-乙基呋喃、乙酸丁酯10 kinds, the pink box from left to right: Nonanal, Octanal, Heptanal, Hexanal, Linalool, β-Pinene,(E)-2-Hexenol,2-Cyclohexen-1-one,2-Ethylfuran,Butyl acetate 13种,紫色横框从左至右:1-辛烯-3-醇、异戊醇、2-丙醇、丙酸乙酯、2-甲基丁酸乙酯、3-甲硫基丙醛、2-甲基丁醛、甲基丙醛、E-2-壬烯醛、丙酸、丙酮、1-己醇、2,3-戊二酮13 kinds,the purple box from left to right:1-Octen-3-ol,Isopentanol,2-Propanol,Ethyl propanoate,Ethyl 2-methylbutanoate, 3-(Methylthio)propanal, 2-Methyl-butanal, Methylpropanal, (E)-2-Nonenal,Propanoic acid,Acetone,1-Hexanol,2,3-Pentanedione 8种,深红横框从左至右:Z-2-戊烯醇、β-罗勒烯、3-戊酮、环己酮、乙酸乙酯、乙酸异戊酯、乙醇、戊醛8 kinds, the dark red box from left to right: (Z)-2-Pentenol, β-Ocimene, 3-Pentanone, Cyclohexanone,Ethyl acetate,Isoamyl acetate,Ethanol,Pentanal 7种7kinds 6、5、8、9、10、11、18

2.7 挥发性风味的GC-IMS主成分分析

为了更加直观地分析5个荔枝品种挥发性风味物质差异,运用Dynamic PCA 插件程序制作了主成分分析图(图6),如图所示,PC1 和PC2 的贡献解释了总变异的67%(横坐标PC1 41%+纵坐标PC2 26%)以上,且5个品种在图中分别分布在不同距离的区域,表示品种间挥发性风味组分有一定的差异。BL 和HZ 样品在主成分分析图左侧,BL 距离HZ最近;XJF单独聚在中间上侧,距离HZ较BL远;SJQ和FL同在右侧,与HZ的距离最远。这一结果显示,BL 和HZ 的总挥发性风味差异最小,XJF 次之,而FL 和SJQ 的总挥发性风味同HZ 差异最大,进一步说明5个品种间的挥发性风味及组分差异显著。

3 讨 论

果实的甜度取决于总糖含量、糖分组成及其含量,荔枝中的主要糖类是蔗糖、果糖和葡萄糖[9],葡萄糖常常被认为是最主要的糖类,但荔枝品种、成熟度和糖代谢途径中关键酶,比如蔗糖转化酶的活性决定可食部分中这些糖含量的比率[12-13]。Yang 等[14]的分析认为,42个荔枝品种的葡萄糖和果糖水平近于等量,Paull等[15]的研究结果则显示水东、桂味中的蔗糖含量水平远高于葡萄糖。本研究结果显示,SJQ、FL和BL同HZ一致,以葡萄糖和果糖为主,二者的含量水平近乎等量,与已报道的42个荔枝品种类似,而不同于葡萄糖含量低于蔗糖的水东和桂味。XJF的蔗糖、葡萄糖和果糖含量比较均等,在上述已研究报道的荔枝品种中尚未发现与之相似的,这进一步为不同荔枝品种果肉中糖组分及含量差异提供了丰富的证据。

果实有机酸组分与含量的差异使不同类型果实各具独特的风味。荔枝果肉中早期以琥珀酸为主,成熟期以苹果酸为主,另含有少量柠檬酸[13,15]。Wang等[16]认为荔枝中柠檬酸和苹果酸的含量均较高。本研究结果显示,5个荔枝品种中的主要有机酸均为苹果酸,且各品种间苹果酸含量差异与可滴定总酸含量一致。XJF的酸含量最高,与HZ在同一水平,其他3个优质品种的酸含量均低于HZ,FL酸度最低。在5个品种的荔枝中也检测到柠檬酸和琥珀酸,但柠檬酸的相对含量比苹果酸低很多,琥珀酸则更低,与前人研究结果有所差异,可能是荔枝品种不同造成的。

已有研究从荔枝果皮和果核中鉴定出多种酚类物质,而对荔枝果肉中酚类及其生物活性的定性和定量研究非常有限[17-19]。本研究结果显示所测5个荔枝品种果肉中的总酚含量水平均比较低,总黄酮相对含量更低,但4个优质品种的总酚含量均不同程度地高于传统栽培的HZ,品种间总黄酮相对含量差异不明显。前人采用不同方法从荔枝果肉中初步鉴定出的酚和黄酮类物质主要有槲皮素、山奈酚、反式肉桂酸、天竺葵素-3-葡糖苷、没食子酸、绿原酸、儿茶素等,对较富含酚类物质的4个优质荔枝品种中具体的酚类物质组分及生物活性有待进一步研究确定[20-21]

水果的主要挥发性风味成分为酯类、醇类、醛酮、醚类和萜烯类物质,是引起不同种类果实特有风味和嗅感的主要化合物[22-23]。针对荔枝中的挥发性风味化合物研究,已有报道主要采用顶空固相微萃取(HS SPME)和气相色谱-质谱(GC-MS)联用分析技术,且不同研究利用的荔枝品种不同,分析得到的挥发性风味组分也不同。Johnston 等[24]最早从荔枝中利用GC-MS 检测到48 种挥发性风味化合物,Toulemonde等[25]从荔枝的顶空成分鉴定出89种挥发性化合物,国内外研究多数认为荔枝的主要挥发性成分为烯类和醇类[26-27]。笔者在本研究中采用GCIMS技术,果实样品无需复杂的前处理,直接进样进行顶空成分分析,避免前处理造成的风味物质流失或变化。结果从5个荔枝品种中共鉴定出53种已知的挥发性物质,包含了水果的主要挥发性风味成分酯(8种)、醇(10种)、酸(1种)、醛(11种)、酮(6种)和萜烯类(7种)。另外有22种未定性的挥发性风味化合物,主要是由于目前GC-IMS Library Search 软件内置的2014NIST 和IMS 数据库中关于其特征物质的信息还不够完善。但GC-IMS 技术可以构建5 个荔枝品种的特征风味物质变化指纹图谱,揭示了各品种的主要挥发性物质种类及数量差异明显,且各品种共有的挥发性风味化合物种类及数量不多,FL没有明显集中的特征峰区域,其挥发性风味物质种类和含量最少,主成分分析也显示XJF的总挥发性风味单独聚为一类,为首次研究报道。因此,GS-IMS风味分析技术对构建果实挥发性物质指纹图谱,区分不同样品间的挥发性风味特征及组分差异有重要应用价值。另外,本研究挥发性风味组分的具体种类及数量同前人已报道有所不同,这也可能与荔枝品种、栽培种植地区、成熟度等的不同有关[28]

4 结 论

5个荔枝品种的糖、酸、维生素C等品质指标和挥发性风味物质的气相离子迁移谱检测结果表明:SJQ、FL和BL同HZ一致,以葡萄糖和果糖为主,蔗糖占比较低,而XJF的蔗糖、葡萄糖和果糖占比比较均等;5 个荔枝品种中的主要有机酸均为苹果酸,XJF与HZ的苹果酸含量在同一最高水平,其他3个优质品种的苹果酸含量均低于HZ,FL 的最低;5 个荔枝品种果肉中的总酚含量水平较低,但4 个优质品种的总酚含量均不同程度地高于HZ;5个荔枝品种间共有的挥发性风味化合物种类及数量不多,XJF、SJQ 和BL 同HZ 一样,有明显独立的风味物质特征峰区域,而FL的挥发性风味物质种类和含量最少,且没有明显集中的特征峰区域,最为独特。总体比较显示,5个荔枝品种的糖组分及含量、苹果酸和维生素C 含量均有显著差异,而不同品种间的挥发性风味组分和含量差异最大,最具有品种特异性。

参考文献:

[1]WU Y L,YI G J,ZHOU B R,ZENG J W,HUANG Y H.The advancement of research on litchi and longan germplasm resources in China[J].Scientia Horticulturae,2007,114(3):143-150.

[2]MITRA S.Tropical and subtropical fruits in India[J].Journal ofTropical Crop Science,2014,1(1):1-4.

[3]陈厚彬,欧良喜,李建国,苏钻贤,杨胜男,吴振先,胡卓炎.新中国果树科学研究70 年:荔枝[J].果树学报,2019,36(10):1399-1413.CHEN Houbin,OU Liangxi,LI Jianguo,SU Zuanxian,YANG Shengnan,WU Zhenxian,HU Zhuoyan.Fruit scientific research in New China in the past 70 years:Litchi[J].Journal of Fruit Science,2019,36(10):1399-1413.

[4]范妍,尹金华,刘成明,罗诗,周佳,黄旭明.晚熟荔枝新品种岭丰糯的选育[J].果树学报,2010,27(5):852-853.FAN Yan,YIN Jinhua,LIU Chengming,LUO Shi,ZHOU Jia,HUANG Xuming.A new high quality litchi cultivar,Lingfengnuo[J].Journal of Fruit Science,2010,27(5):852-853.

[5]李鸿莉,彭宏祥,朱建华,秦献泉,徐宁,陆贵锋,李冬波,黄凤珠.优质荔枝新品种桂荔1 号的选育[J].果树学报,2017,34(1):125-128.LI Hongli,PENG Hongxiang,ZHU Jianhua,QIN Xianquan,XU Ning,LU Guifeng,LI Dongbo,HUANG Fengzhu.Breeding of new high quality litchi cultivar Guili No.1[J].Journal of Fruit Science,2017,34(1):125-128.

[6]刘伟,廖美敬,蒋侬辉,凡超,吴颜洲,张湛辉,朱润尧,向旭.荔枝新品种北园绿的选育[J].果树学报,2019,36(2):253-255.LIU Wei,LIAO Meijing,JIANG Nonghui,FAN Chao,WU Yanzhou,ZHANG Zhanhui,ZHU Runyao,XIANG Xu.Breeding of a new litchi cultivar Beiyuanlü[J].Journal of Fruit Science,2019,36(2):253-255.

[7]邱燕萍,李志强,袁沛元,欧良喜,向旭,陈洁珍,孙清明,蔡长河.荔枝新品种仙进奉的形状观察[J].广东农业科学,2010,8(1):65-66.QIU Yanping,LI Zhiqiang,YUAN Peiyuan,OU Liangxi,XIANG Xu,CHEN Jiezhen,SUN Qingming,CAI Changhe.Characters observation of a new litchi cultivar Xianjinfeng[J].Guangdong Agricultural Sciences,2010,8(1):65-66.

[8]马锞,赖旭辉,胡锐清,罗诗,李建国.荔枝新品种冰荔[J].园艺学报,2019,46(3):605-606.MA Ke,LAI Xuhui,HU Ruiqing,LUO Shi,LI Jianguo.A new litchi cultivar[J].Acta Horticulturea Sinica,2019,46(3):605-606.

[9]乔方,黄略略,方长发,张树飞.深圳南山荔枝的品质分析与喜好度研究[J].食品工业科技,2013,34(24):355-358.QIAO Fang,HUANG Luelue,FANG Changfa,ZHANG Shufei.Taste characters and hedonic study of three popular lychees (Litchi chinensis Sonn.)in Shenzhen[J].Science and Technology of Food Industry,2013,34(24):355-358.

[10]HUANG L L,ZHANG M,YAN W Q,MUJUMDAR A,SUN D F.Rehydration characteristics of freeze-dried strawberry pieces as affected by whey protein edible coatings[J].International Journal of Food Science&Technology,2011,46(4):671-677.

[11]SIVAKUMAR D,NAUDÉ Y,ROHWER E,KORSTEN L.Volatile compounds,quality attributes,mineral composition and pericarp structure of South African litchi export cvs.Mauritius and McLean’s Red[J].Journal of the Science of Food and Agriculture,2008,88(6):1074-1081.

[12]JIANG Y M,WANG Y,SONG L,LIU H,LITCHTER A,KERDCHOECHUEN O,JOYCE D C,SHI J.Postharvest characteristics and handling of litchi fruit-An overview[J].Australian Journal of Experimental Agriculture,2006,46(12):1541-1556.

[13]WANG H C,HUANG H B,HUANG X M,HU Z Q.Sugar and acid compositions in the arils of Litchi chinensis Sonn.:Cultivar differences and evidence for the absence of succinic acid[J].The Journal of Horticultural Science and Biotechnology,2006,81(1):57-62.

[14]YANG Z Y,WANG T D,WANG H C,HUANG X M,QIN Y H,HU G B.Patterns of enzyme activities and gene expressions in sucrose metabolism in relation to sugar accumulation and composition in the aril of Litchi chinensis Sonn.[J].Journal of Plant Physiology,2013,170:731-740.

[15]PAULL R,CHEN N J,DEPUTY J.HUANG H B,CHENG G W,GAO F F.Litchi growth and compositional changes during fruit development[J].Journal of American Society for Horticultural Science,1984,109(3):817-821.

[16]WANG C Y,CHEN H,JIN P,GAO H.Maintaining quality of litchi fruit with acidified calcium sulfate[J].Journal of Agricultural and Food Chemistry,2010,58(15):8658-8666.

[17]郑公铭,义志忠,张际标,忠冬晖.荔枝果皮抗氧化作用研究[J].天然产物研究与开发,2003,15(4):341-344.ZHENG Gongming,YI Zhizhong,ZHANG Jibiao,ZHONG Donghui.Studies on the antioxidative effect of extract from mature and premature litchi pericarp[J].Natural Product Research and Development,2003,15(4):341-344.

[18]WANG H C,HU Z Q,WANG Y,CHEN H B,HUANG X M.Phenolic compounds and the antioxidant activities in litchi pericarp:Difference among cultivars[J].Scientia Horticulturae,2011,129(4):784-789.

[19]PAREEK S.Nutritional and biochemical composition of lychee(Litchi chinensis Sonn.) cultivars[J].Nutritional Composition of Fruit Cultivars,2016,11:395-418.

[20]ZHANG R F,ZENG Q S,DENG Y Y,ZHANG M W,WEI Z C,ZHANG Y,TANG X J.Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in Southern China[J].Food Chemistry,2013,136(3/4):1169-1176.

[21]MAHATTANATAWEE K,PEREZ-CACHO P R,DAVENPORT T,ROUSEFF R.Comparison of three lychee cultivar odor profiles using gas chromatography-olfactometry and gas chromatography- sulfur detection[J].Journal of Agricultural and Food Chemistry,2007,55(5):1939-1944.

[22]GONZALEZ-MAS M C,RAMBLA J L,ALAMAR M C,GUTIERREZ A,GRANELL A.Comparative analysis of the volatile fraction of fruit juice from different Citrus species[J].PLoS One,2011,6(7):1-11.

[23]马锞,谷超,尹君乐,胡锐清,罗诗,王泽槐,李建国.观音绿荔枝香气成分的顶空固相微萃取GC-MS 分析[J].华南农业大学学报,2015,36(2):113-116.MA Ke,GU Chao,YIN Junle,HU Ruiqing,LUO Shi,WANG Zehuai,LI Jianguo.An analysis of volatile components in Guanyinlu litchi by headspace solid-phase microextraction with GC-MS [J].Journal of South China Agricultural University,2015,36(2):113-116.

[24]JOHNSTON J C,WELCH R C,HUNTER G L K.Volatile constituents of litchi (Litchi chinesis Sonn.)[J].Journal of Agricultural and Food Chemistry,1980,28(4):859-861.

[25]TOULEMONDE B,BEAUVERD D.Headspace analysis:Trap desorption by microwave energy application to the volatile components of some tropical fruits[J].Developments in Food Science,1985,48(10):533-548.

[26]郝菊芳,徐玉娟,李春美,窦宏亮,顾海峰,胡婉峰.不同品种荔枝香气成分的SPME/GC-MS 分析[J].食品科学,2007,28(12):404-408.HAO Jufang,XU Yujuan,LI Chunmei,DOU Hongliang,GU Haifeng,HU Wanfeng.Analysis of aromatic compositions in different breeds of litchi by SPME/GC-MS methods [J].Food Science,2007,28(12):404-408.

[27]徐禾礼,余小林,胡卓炎,陈厚彬.七个荔枝品种果实香气成分的提取与分析研究[J].食品与机械,2010,26(2):23-26.XU Heli,YU Xiaolin,HU Zhuoyan,CHEN Houbin.Study on extraction and analyzing of aroma compounds in seven cultivars of litchi fruits[J].Food&Machinery,2010,26(2):23-26.

[28]JANZANTTI N S,MACORIS M S,GARRUTI D S,MONTEIRO M.Influence of the cultivation system in the aroma of the volatile compounds and total antioxidant activity of passion fruit[J].Food Science and Technology,2012,46(2):511-518.

Comparative analysis of fruit quality of five litchi cultivars

MENG Xiangchun,HUANG Zepeng,XIAO Zhidan,FAN Chao,XIANG Xu
(Institute of Fruit Tree Research, Guangdong Academy of Agricultural Science/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA)/Key Laboratory of Tropical and Subtropical Fruit Tree Research,Guangzhou 510640,Guangdong,China)

Abstract:【Objective】Lychee(Litchi chinensis Sonn.)is a famous tropical fruit cultivated in south China.There are more than 40 varieties for commercial production.Huaizhi,Heiye and Feizixiao are most widely cultivated varieties.In recent years,many new cultivars with better quality has been bred.In this study four new lychee cultivars Xianjinfeng (XJF), Shuijingqiu (SJQ), Folü (FL) and Bingli (BL) were investigated to define their quality and flavor differences compared with the older cultivar Huaizhi(HZ).【Methods】The fructose,glucose and sucrose of the fruits were detected with Hexokinase and sucrose kit.Total soluble solids(TSS)were measured by a Brix meter(PAL-1).Acid components and vitamin C content were determined by High Performance Liquid Chromatography(HPLC)equipped with a C18 reverse chromatographic column and UV-detector.The total phenols and flavonoids were detected with Folin- phenol analysis kit (G0117W) and NaNO2- Al(NO3)3- NaOH colorimetric method kit(G0118W),respectively.The volatile flavor compounds were detected by Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) technology with flavor analyzer instrument (FlavourSpec®, G.A.S).Instrument plug-in software VOCal with NIST and IMS database were used for identification and quantification of volatile flavor compounds.Plug in Gallery Plot and Dynamic PCA software were used for generating fingerprint and clustering and similarity analysis for volatile flavor compounds.【Results】Theaverage TSS of the four new lychee cultivars were all slightly higher than that of HZ, with no significance.While the sugar composition and contents of new lychee cultivars were significantly different from those of HZ.The contents of glucose and fructose of XJF were 24.5% and 14.5% lower than that of HZ, and the content of sucrose was almost twice as high as that of HZ, and the contents of the three kinds of sugars were almost the same in XJF.The content of sucrose of SJQ, FL and BL cultivars was similar to that of HZ and were lower than the levels of glucose and fructose.The highest content of acid components was malic acid in all of the cultivars and was several to ten times higher than citric acid and succinic acid.XJF and HZ had the similar levels of malic acid content, the other three new lychee cultivars had much lower content of malic acid compared with HZ, FL had the lowest malic acid content.The contents of citric acid of the four new lychee cultivars were all higher than that of HZ and they were in the order of BL>XJF>SJQ>FL.XJF and FL had higher contents of Vitamin C(254.3 and 299.8µg·g-1)than those of HZ(211.4µg·g-1),SJQ(153.8µg·g-1)and BL(133.5µg·g-1).The concentrations of total phenols and flavonoids in all cultivars were relatively lower and the difference between them was not obvious.The total 53 identified and 22 unidentified volatile flavor compounds of five lychee cultivars were detected by the technique of GC-IMS.The identified volatile flavor compounds included 11 kinds of aldehyde, 10 kinds of alcohol, 8 kinds of esters, 7 kinds of alkene, 6 kinds of ketones, 1 kinds of furan and 1 kinds of acid.The fingerprint information of volatile flavor compounds showed different composition among cultivars.HZ, BL, XJF and SJQ had their specific characteristic fingerprint peak regions, whereas FL had no the peak region but had characteristic compounds of 1-hexanol, 2,3-pentanedione,3-octanone and other two unidentified chemicals.About ten different volatile flavor compounds existed in each characteristic fingerprint peak region of BL,XJF and SJQ,but they were totally different each other and also different from HZ among identified chemicals and only two unidentified chemicals were the same between XJF and HZ,indicating the most important distinction among the different lychee cultivars was volatile flavor compounds.The analysis of GC-IMS principal component analysis showed that five different cultivars were isolated clearly in five groups.The distance was near between BL and HZ and they were far from XJF.SJQ and FL were nearly located but they were the most far from HZ.The results indicated that the difference of volatile flavor compounds in BL and HZ were less than those of other cultivars and XJF had great difference copared with HZ and BL.Maximum difference was found in SJQ and FL.【Conclusion】As shown above, compared with HZ, the fruit quality indexes of the four new lychee cultivars had some difference,respectively,but the difference of volatile flavor components was different significantly.It was suggested that the sugar and acid composition and content,as well as volatile flavor compounds could be used as the quality evaluation indexes of new lychee cultivars.

Key words:Litchi;Sugar;Organic acid;Volatile flavor;Flavor fingerprint

中图分类号:S667.1

文献标志码:A

文章编号:1009-9980(2022)01-0068-10

DOI:10.13925/j.cnki.gsxb.20210127

收稿日期:2021-06-01

接受日期:2021-09-08

基金项目:2021年省级乡村振兴战略专项(粤农农计〔2021〕59号)

作者简介:孟祥春,副研究员,博士,主要从事热带亚热带果品采后贮运保鲜相关技术研发工作。Tel:13825088687,E-mail:mengxiangchun@gdaas.cn