拉枝对黔核7号泡核桃叶片营养、成花及坚果品质的影响

蔡 虎1,张文娥1,吴 浪1,樊卫国1,王金金1,彭 剑2,江 辉2,曹景富2,潘学军1*

1贵州大学农学院·贵州省果树工程技术研究中心,贵阳 550025;2赫章县核桃产业发展事业局,贵州 赫章 553200)

摘 要:【目的】探究拉枝对泡核桃(Juglans sigillata Dode)生理生长、成花坐果和坚果品质的影响。【方法】以黔核7号为试材,以自然生长开张角度在30°~35°之间的枝条为对照(CK),设置拉枝60°、90°和110°3个处理,统计拉枝后枝条的数量和类型、成花数和坐果数,计算坐果率,测定叶片的光合特性、叶绿素含量、叶片的营养元素含量和坚果品质。【结果】拉枝90°时显著提高了黔核7 号的总枝条数、短枝数和中长枝数,与对照相比分别提高了36.8%、64.0%和81.0%;并且,拉枝90°时雌花数、坐果数、坐果率达到最大值,比对照组分别提高了206.6%、231.1%和14.1%;树体内膛、中部和外围的净光合速率、气孔导度、蒸腾速率、叶绿素a含量、叶绿素b含量、类胡萝卜素含量在拉枝90°时达到最大值,拉枝90°和110°能够显著降低中部和外围叶片的胞间CO2浓度;叶片的N、P、K、Ca、Mg、Fe、Zn元素含量在拉枝90°时也有不同程度的增加;拉枝在不明显改变黔核7号的纵径、横径、果形指数、壳厚、出仁率的情况下,能够促进其核仁质量、蛋白质含量和粗脂肪含量的积累,其中,只有拉枝90°显著增加了黔核7 号的单果质量,比对照提高了6.0%。【结论】拉枝90°能够增加黔核7号泡核桃的叶片养分含量,促进成花和坐果,并提高坚果品质。

关键词:泡核桃;拉枝;光合特性;成花;坚果品质

拉枝作为果树整形修剪的一种重要措施,能够控制树体旺长疯长、延缓树势,促进开花结果,对提高果树产量、改善果品品质具有重要的作用[1-2]。拉枝后,新梢和叶片的生长加速,树冠内部的通风透光性得到有效改善,树冠的光能截获能力增强,树体营养被重新分配运输向利于成花的方向[3]。许家辉等[4]把早钟6号枇杷枝条拉到30°到45°之间时,可抑制夏梢长度,增加枝条粗度和叶片数量,提高优良结果母枝比例;而富士苹果拉枝处理能够显著提高叶片厚度和叶片叶绿素含量[5],拉枝110°的乔纳金叶片单叶鲜质量、叶片厚度、叶绿素含量、叶片净光合速率、蒸腾速率均高于其他处理[6]。拉枝不仅改善了树体光合能力,而且能够改变树体营养元素含量和分配,影响花芽中内源激素的含量和比例,显著提高成花数和坐果率[7-8]。文冠果拉枝60°的叶片可溶性糖、淀粉含量和碳氮比显著高于和45°枝条,氮含量则相反[9];李晓龙等[10]发现,拉枝后梨花芽分化促进类激素(ZT 和ABA)含量上升,花芽分化抑制类激素(GA3和IAA)含量下降,成花促进基因(LFY和FT)的表达量上升,成花抑制基因(TFL1)的表达量下降。拉枝对果实品质也有一定的影响,富士和嘎拉分别在拉枝110°和90°时,果实花色素含量、可溶性固形物含量和总糖含量等最高,而总酸含量最低,并且果实钙含量也因拉枝角度的增大而增加[11]

目前,拉枝在早实核桃上也有少量应用[12-13]。研究发现,90°拉枝刻芽处理可显著提高绿岭和温185的新梢抽生率和坐果率,拉枝60°可缩短温185新梢第一节间距离,拉枝45°时绿岭的坚果品质最佳[12-13]。黔核7 号是泡核桃实生群体中选育出的优质晚实型品种,是贵州核桃产业的主栽品种之一,但其高产栽培理论与配套技术仍不完善,极大限制了核桃产量的进一步提高[14-15]。笔者在本研究中以自然生长开张角度在30º~35º之间的黔核7 号枝条为对照(CK),研究了拉枝60°、90°和110°对其枝组数量、叶片的光合特性和营养状况、成花坐果及坚果品质的影响,以期为黔核7 号的优质高产栽培提供科学依据。

1 材料和方法

1.1 试验材料及设计

本试验材料来源于贵州省毕节市赫章县营丰村国家核桃良种水塘繁育基地。供试品种为树势、花期一致的晚实核桃品种黔核7号(2014年高接,砧木为3年生铁核桃),该品种干性强,中心干生长旺盛,在自然条件下主枝与中心干的分枝角度多小于40°,以30°~35°居多。田间株行距为5 m×6 m,梯带式布局。参照前人研究[9,11,13],设计60°、90°和110°共3个拉枝水平,以自然生长开张角度在30°~35°之间的枝条作为对照组(CK),除中心主干外,其余枝条按照设置角度拉枝。采用随机区组设计,每个小区3 株树势基本相同的核桃树,3次重复,共计36株。拉枝于2017 年1 月份核桃花芽生理分化期之前进行,参照李晶晶等[16]的方法确定生理分化期,拉枝采取布绳条一次拉枝成型。2018年(拉枝1 a后)测定各生长、生理和品质指标。

1.2 测定方法

1.2.1 枝条数量及类型测定 2018 年11 月用便携式卷尺测量每处理的枝条长度并分类(长枝:大于30 cm、中长枝:15~30 cm、短枝:小于15 cm),计算中短枝占比[17]

中短枝占比/%=[中长枝数(个·株-1)+短枝数(个·株-1)]/总枝数(个·株-1)×100

1.2.2 核桃植株花芽、雌雄比及坐果率测定 2018年4月中旬使用机械式计数器调查记录核桃树上雌花芽、雄花芽的数量,并计算雌雄比,于8月下旬至9月上旬核桃果实成熟期使用机械式计数器记录果实数量[18]

雌雄比=每个处理的雌花芽数(个·株-1)/每个处理的雄花芽数(个·株-1);

坐果率/%=每个处理的总坐果数(个·株-1)/每个处理的总雌花数(个·株-1)×100。

1.2.3 叶片光合特性的测定 叶片的光合指标的测定选择在试验地天气晴朗的2018 年8 月24 日早上10:00—11:00 进行。采用便携式Li-6400 光合仪,每个小区选取1株树冠大小、采光条件相似的核桃树,以东、南、西、北4个方向上的处理枝,参照常月梅的方法将枝条从水平方向分为内膛(距树干<0.6 m 的部位)、中部(距树干0.6~1.2 m的部位)和外围(距树干>1.2 m 的部位)3 个部位[19],每个部位选3 枚健康的功能叶片,3 次重复,测定叶片的净光合速率、气孔导度、胞间CO2浓度、蒸腾速率[12]

1.2.4 叶绿体色素含量 2018 年8 月24 日,参照1.2.3 中的方法,在3 个部位分别采摘5 枚功能叶片[12],每个部位20 枚叶片,每个部位的叶片混合后装入密封袋,用于测定叶绿体色素含量,3 次重复。采摘后的样品,记录好采样时间、处理号,放置于装有冰袋的泡沫箱及时带回试验室。树冠不同部位叶片叶绿素a、b的含量和类胡萝卜素含量用分光光度法测定,并计算叶绿素含量、总叶绿素含量[20]

1.2.5 叶片营养元素含量的测定 2018 年8 月24日,按照1.2.4 的方法采集叶片,放置于装有冰袋的泡沫箱及时带回试验室,用去离子水清洗。将叶片于105 ℃烘箱杀青15 min,置于65 ℃烘箱烘至恒重,测定叶片的单叶干质量和营养物质含量,N元素含量分别采用凯氏定氮法、钒钼黄比色法测定,P、K、Ca、Mg、Fe、Mn、Cu,Zn采用原子吸收分光光度法测定[21]

1.2.6 果实品质的测定 2018年9月中下旬果实成熟期(青皮开裂1/2)采集处理枝上的果实,每个拉枝处理随机挑选30个果实,用数显式游标卡尺测定果实的纵横径,计算果形指数;用精度为千分之一的电子天平测定果实单果质量和核仁质量,并计算出仁率;粗脂肪含量的测定参照GB 5009.6—2016,蛋白质含量的测定参照GB 5009.5—2016。每10个测定1次,共测3次。

1.3 数据处理

采用Excel 2013 进行试验数据的记录与整理。采用DPSv 7.05 进行随机区组单因素方差分析和显著性检验(p < 0.05),采用Dancan 新复极差法进行数据的多重比较。

2 结果与分析

2.1 拉枝对黔核7号枝组数量及构成的影响

拉枝可明显增加黔核7号的总枝条数、短枝数、中长短枝数及中短枝的比例(表1)。与对照相比,拉枝60°只显著增加了中长枝数;而拉枝90°时,黔核7 号的总枝条数、短枝数、中长枝数均显著增多,与对照相比分别提高了36.8%、64.0%和81.0%;当角度拉到110°时,短枝数和中长枝数仍保持较高水平,长枝数虽然与其他处理无显著差异,但在数值上却比较小。由此可见,拉枝可增加黔核7号短枝数、中长枝数,提高结果枝比例。

表1 拉枝对黔核7 号枝组数量及构成的影响
Table 1 Effect of branch pulling angle on branch formation of Qianhe 7

注:不同小写字母表示处理间差异在p<0.05 上达到显著水平。下同。
Note:Different small letters indicate significant difference at p<0.05.The same below.

处理Treatments对照CK 60°90°110°中短枝/总枝条Medium long and short branches/Total of branches/%57 67 72 75总枝条数Total number of branches 54.3±7.5 b 61.0±7.0 ab 74.3±3.0 a 70.3±10.5 ab短枝数Number of short branches 15.0±2.0 b 17.3±3.2 b 24.6±2.5 a 26.3±3.6 a中长枝数Number of medium long branches 15.3±1.5 b 22.3±2.0 a 27.7±3.2 a 25.3±5.0 a长枝数Number of long branches 24.0±6.5 a 21.3±4.0 a 22.0±2.0 a 18.3±2.5 a

2.2 拉枝对黔核7号成花坐果的影响

从表2可以看出,拉枝对黔核7号的成花坐果有重要作用。拉枝90°显著增加黔核7号的雌花数、坐果数、坐果率,比对照组分别提高了206.6%、231.1%和14.1%;拉枝110°同样提高了黔核7 号的坐果率,与拉枝90°差异不显著;但拉枝60°和110°对雌花数和坐果数的影响不明显;说明拉枝能够调节黔核7号的雌花数和坐果数,提高其坐果率,且90°的拉枝对提高黔核7号的成花和坐果的效果最好。

表2 拉枝对黔核7 号成花坐果的影响
Table 2 Effects of branching angle on flower and fruit setting of Qianhe 7

处理Treatments CK 60°90°110°雄花数Number of male flowers 52.3±23.2 a 76.3±32.5 a 89.7±22.0 a 77.7±23.1 a雌花数Number of female flowers 21.3±17.2 b 50.3±14.5 ab 65.3±16.1 a 32.3±25.0 ab坐果数Number of fruit setting 16.7±14.1 b 40.3±11.8 ab 55.3±13.3 a 27.3±21.4 ab坐果率Fruit setting rate/%74.3 b 80.0 ab 84.8 a 83.1 a

2.3 拉枝对黔核7号光合特性的影响

拉枝后对黔核7 号树体内膛、中部和外围三个部位的净光合速率、气孔导度、胞间CO2浓度、蒸腾速率进行了测定。结果显示,与对照相比,拉枝90°和110°显著提高了内膛的净光合速率、气孔导度、蒸腾速率,但拉枝对内膛叶片的胞间CO2浓度没有影响。树体中部的光合特性与内膛的相似,但拉枝90°和110°降低了叶片的胞间CO2浓度。在树冠外围,各个处理下光合特性的差异各不相同,拉枝90°能够提高光合速率、气孔导度和蒸腾速率;并且拉枝处理均降低了外围叶片的胞间CO2浓度;3 个处理下,净光合速率和蒸腾速率表现为90°处理>110°处理>60°处理>CK。拉枝对树冠3个部位光合作用的改变表现为内膛最大,中部次之,外围最小(表3)。结果说明拉枝可以改善黔核7 号的光合作用。因此,在改善树体光照条件时,90°是适宜黔核7号拉枝的角度。

表3 拉枝对黔核7 号光合特性的影响
Table 3 Effects of branching angle on photosynthetic characteristics of Qianhe 7

位置Location内膛Interior中部Middle外围Periphery处理Treatment对照CK 60°90°110°对照CK 60°90°110°对照CK 60°90°110°净光合速率Pn/(mmol·m-2·s-1)4.94±0.93 b 4.87±0.91 b 8.34±0.32 a 8.22±0.25 a 6.53±0.95 b 6.67±0.31 b 9.63±0.19 a 9.03±0.28 a 7.36±0.16 d 8.42±0.35 c 10.27±0.21 a 9.51±0.42 b气孔导度Gs/(mmol·m-2·s-1)0.21±0.06 b 0.30±0.02 ab 0.47±0.14 a 0.46±0.12 a 0.25±0.07 b 0.29±0.02 b 0.46±0.12 a 0.50±0.04 a 0.34±0.01 b 0.48±0.10 ab 0.57±0.07 a 0.45±0.08 ab胞间CO2浓度Ci/(µmol·mol-1)208.67±5.51 a 199.33±17.47 a 198.33±19.50 a 187.67±6.66 a 188.33±12.06 a 203.33±3.51 ab 186.67±5.51 b 185.00±4.36 b 237.33±14.64 a 199.33±4.62 b 185.00±11.27 b 189.67±4.93 b蒸腾速率Tr/(mmol·m-2·s-1)2.73±0.55 b 3.62±0.21 b 5.95±0.56 a 5.07±0.26 a 2.73±0.14 b 3.34±0.46 b 5.88±0.69 a 5.34±0.33 a 3.27±0.15 c 4.67±0.31 b 5.70±0.10 a 5.64±0.45 a

2.4 拉枝对黔核7号叶片叶绿素含量的影响

不同角度的拉枝处理后,测定黔核7号内膛、中部和外围的叶绿素含量。如表4所示,与对照相比,拉枝90°和110°均提高了黔核7 号树冠内膛和中部的叶绿素a含量、叶绿素b含量、叶绿素含量、类胡萝卜素含量和总叶绿素含量;拉枝60°同样提高了中部的叶绿素a含量、叶绿素含量和总叶绿素含量。不同的是,只有90°拉枝提高了黔核7号外围的叶绿素a含量、叶绿素含量、类胡萝卜素含量和总叶绿素含量,并且拉枝对黔核7 号外围的叶绿素b 含量没有影响。结果表明,拉枝可以改变黔核7号内膛、中部和外围3个部位叶片的叶绿素含量,其改变量表现为中部最大,外围次之,内膛最小。结果为核桃拉枝后叶片光合作用的增强提供了解释。结果显示,90°的拉枝最有利于黔核7号叶片中的叶绿素含量的增加。

表4 拉枝对黔核7 号叶绿素含量的影响
Table 4 Effects of branching angle on chlorophyll content of Qianhe 7

位置Location内膛Interior中部Middle外围Periphery处理Treatment对照CK 60°90°110°对照CK 60°90°110°对照CK 60°90°110°w(叶绿素a)Chlorophyll a content/(mg·g-1)2.14±0.05 b 2.08±0.05 b 2.45±0.08 a 2.40±0.15 a 2.33±0.02 c 2.44±0.04 b 2.88±0.04 a 2.80±0.07 a 2.74±0.10 b 2.80±0.08 b 3.12±0.03 a 2.86±0.21 ab w(叶绿素b)Chlorophyll b content/(mg·g-1)0.77±0.02 c 0.82±0.04 bc 0.96±0.05 a 0.89±0.07 ab 0.83±0.04 b 0.94±0.03 ab 1.03±0.04 a 0.98±0.13 a 0.93±0.03 b 1.03±0.02 ab 1.09±0.10 ab 0.96±0.12 ab w(叶绿素)Chlorophyll content/(mg·g-1)2.92±0.04 b 2.90±0.09 b 3.42±0.10 a 3.29±0.09 a 3.16±0.05 c 3.38±0.07 b 3.91±0.02 a 3.80±0.06 a 3.67±0.12 b 3.82±0.09 ab 4.21±0.11 a 3.83±0.32 ab w(类胡萝卜素)Carotenoid content/(mg·g-1)3.26±0.05 b 3.32±0.17 b 4.03±0.06 a 3.86±0.25 a 3.40±0.18 c 3.78±0.14 bc 4.15±0.10 ab 4.25±0.29 a 3.74±0.16 b 4.09±0.10 ab 4.44±0.35 a 4.10±0.29 ab w(总叶绿素)Total Chlorophyll content/(mg·g-1)6.18±0.07 b 6.22±0.25 b 7.44±0.15 a 7.15±0.17 a 6.56±0.20 c 7.16±0.19 b 8.06±0.12 a 8.05±0.35 a 7.42±0.27 b 7.92±0.16 ab 8.65±0.45 a 7.82±0.07 ab

2.5 拉枝对黔核7号叶片矿质元素含量的影响

采集拉枝后枝条外围的功能叶,测定叶片矿质元素含量的变化。结果显示,拉枝能够增加黔核7号叶片中N、P、K、Ca、Mg、Fe、Zn 的含量,叶片中P、Ca、Mg、Fe 含量在拉枝60°时最高;N 在110°处理中为最高;K含量在拉枝90°时显著低于对照,而在60°和110°拉枝时较对照显著增加;Zn含量随拉枝角度的增大而增加,在110°处理下达到最高。然而,增大拉枝角度后降低了叶片中Mn含量;拉枝对黔核7号叶片中Cu含量没有影响(表5)。说明拉枝能够改变黔核7号树体养分含量,促进N、P、K、Mg、Fe、Zn元素向叶片分配。

表5 拉枝对黔核7 号叶片矿质元素含量的影响
Table 5 Effects of branching angle on mineral elements in leaves of Qianhe 7

处理Treatment对照CK 60°90°110°矿质元素含量Mineral elements content w(N)/%2.47±0.07 c 2.34±0.08 d 2.60±0.03 b 2.75±0.05 a w(P)/%0.21±0.01 b 0.23±0.00 a 0.21±0.01 b 0.22±0.00 ab w(K)/%1.20±0.00 b 1.39±0.01 a 1.18±0.00 c 1.39±0.01 a w(Ca)/%0.98±0.10 b 1.82±0.08 a 1.11±0.07 b 1.02±0.12 b w(Mg)/%0.29±0.01 d 0.48±0.01 a 0.33±0.00 c 0.37±0.01 b w(Fe)/(mg·kg-1)67.88±5.52 b 77.10±2.11 a 69.94±3.60 b 64.72±0.83 b w(Mn)/(mg·kg-1)849.047±25.51 a 515.46±11.70 c 513.98±7.64 c 651.69±17.90 b w(Cu)/(mg·kg-1)23.37±3.46 a 24.01±0.20 a 25.17±1.13 a 26.58±2.73 a w(Zn)/(mg·kg-1)46.02±0.21 c 50.40±1.25 b 50.25±1.56 b 63.11±2.26 a

2.6 拉枝对黔核7号坚果品质的影响

采集黔核7 号成熟的果实,测定其坚果品质。结果显示,与对照相比,拉枝60°、90°和110°均明显提高了黔核7 号的单仁质量、蛋白质含量和粗脂肪含量。其中,3 个拉枝角度下的粗脂肪含量差异不显著,拉枝90°和110°之间的蛋白质含量无显著差异,而拉枝90°和110°下的蛋白质含量显著高于拉枝60°的蛋白质含量;另外,只有拉枝90°显著提高了黔核7号的单果质量,比对照提高了6.0%。然而,3个拉枝角度下,纵径、横径、果形指数、坚果的壳厚、出仁率与对照组的差异不显著(表6)。结果说明对黔核7 号拉枝能够促进核仁质量、蛋白质含量和粗脂肪含量的积累,但不明显改变其坚果的纵径、壳厚、果形指数、出仁率。综合来看,90°的拉枝处理下坚果品质表现最好。

表6 拉枝对黔核7 号坚果品质的影响
Table 6 Effects of branching angle on nut quality of Qianhe 7

处理Treatment对照CK 60°90°110°纵径Longitudinal diameter/mm 37.77±0.22 a 38.44±0.08 a 38.29±0.10 a 37.88±0.65 a横径Transverse diameter/mm 36.84±0.30 ab 36.44±0.27 b 37.13±0.18 ab 37.51±0.69 a果形指数Fruit shape index 1.03 ab 1.04 a 1.03 a 1.01 b单果质量Single fruit weight/g 11.32±0.45 b 11.69±0.18 ab 11.95±0.37 a 11.86±0.40 ab壳厚Shell thickness/mm 1.06±0.11 a 1.09±0.15 a 1.11±0.14 a 1.03±0.14 a单仁质量Single kernel weight/g 6.54±0.07 b 7.11±0.11 a 7.21±0.10 a 6.94±0.19 a出仁率Kernel yield/%57.85±1.75 a 60.85±0.06 a 60.39±2.46 a 58.56±1.19 a w(蛋白质)Protein content/%12.31±0.15 c 15.00±0.14 b 18.96±0.16 a 19.37±0.61 a w(粗脂肪)Crude fat content/%57.06±0.89 b 59.40±0.54 a 59.91±0.21 a 60.01±0.50 a

3 讨 论

苹果等层性明显的树种因受到树体内激素、养分和水分分布差异的影响,有明显的顶端优势和垂直优势,其顶端活跃部位和直立枝条生长旺盛,而下部枝条生长受到抑制[22]。研究表明拉枝可人为调节枝条角度,使上下前后枝条生长均衡,避免树冠基部枝条光秃,降低顶端优势[23]。拉枝可增加富士和嘎拉苹果的短枝与中长枝顶端的ABA 和ZR 含量,降低IAA 和GA 含量,从而增加短枝比例[1];烟富6 号在拉枝110°后总枝量、叶丛枝、短枝和中枝量也显著增加[24];库尔勒香梨上也有类似的研究结果[25]。泡核桃也属于一种冠层明显的树种,在本研究中,拉枝60°时中长枝数量显著增加;当拉枝90°时,黔核7号的总枝条数、短枝数、中长枝数显著增多;但角度增至110°时,整体枝组组成差于90°。因此,拉枝90°可促进黔核7 号枝条中下部的芽萌发,增加了短枝和中长枝数量,明显改善枝组数量和中短枝比例,提升结果潜能。

光合作用是果树生长发育和果实品质形成的基础。拉枝对阻止光合产物由地上部枝条运输向下方有重要作用,能够使光合产物向生长发育的器官流动[26]。在本研究中,拉枝90°和110°后,显著提高了黔核7号树冠内膛、中部和外围叶片的净光合速率、气孔导度、蒸腾速率、叶绿素a 含量、叶绿素b 含量、叶绿素含量、类胡萝卜素含量和总叶绿素含量,降低了叶片的胞间CO2浓度。在绿岭核桃上也有这样的结论[12]。可能是由于拉枝后增大了叶片对光的截获面积,叶片在获得更多太阳辐射能量的条件下光合作用增强,净光合速率和蒸腾速率增大的速度大于气孔导度增大的速度,并且叶片PS Ⅱ的光合电子传递活性较大,较多的能量用于CO2的同化,所以降低了胞间CO2浓度[5];另外,拉枝可能阻断了部分光合产物由源流向库,更多的留在了叶肉中,供给叶肉生长发育,从而增加了叶片的叶绿素a 含量、叶绿素b含量、类胡萝卜素含量。结果为解释拉枝改善树体光照条件提供了信息。

核桃由于其童期长、树冠大,早实核桃童期一般在3~5 a,而晚实核桃童期达到10 a 左右,是影响核桃成花的主要原因之一;核桃成花还受到树体营养元素含量、内源激素的平衡和基因表达的影响[22]。乔纳金苹果拉枝110°降低了叶片的N 含量,提高了叶片中的P和K的含量,在110°的拉枝角度下,乔纳金的短枝数多,且易于成花[6]。此外,翠冠梨的成花率在拉枝90°时大幅度提高[10]。笔者在本研究中发现,拉枝显著增加了黔核7 号叶片中的N、P、K(除90°拉枝外)、Ca、Mg、Fe、Zn元素的含量,拉枝90°时雌花数、坐果数、坐果率显著增加,但雄花数的变化不明显。说明拉枝可调节核桃雌花芽的形成,促进坐果,增强核桃坐果的能力。分析认为,雌花数、坐果数、坐果率的增加与树体内部营养物质的分配、运转和利用有着紧密的关系,是树体的顶端优势和垂直优势被缓和、光合作用增强及树体中的矿质元素含量增加的结果。拉枝后叶片中N、P、K、Mg、Fe、Zn元素含量增加,可能是因为拉枝后叶片的蒸腾速率增大,使得根系对水分的吸收量随之增大,而土壤水分中溶解了土壤矿质元素,根系吸收了这些水分从而增加了树体的矿质养分含量。而拉枝90°时K元素含量显著低于对照,可能是叶片中的K 元素更多地流向了果实满足果实生长发育的需要。雄花数没有显著改变而雌花数明显增加,可能是因为在花芽分化中雌花对拉枝角度的感应比雄花敏感,这些结果需要进一步的试验验证。

李永武等[11]发现苹果果实品质和钙含量受到不同拉枝角度的影响。本研究中,坚果单果质量、单仁质量、蛋白质含量、粗脂肪含量在拉枝后均有改变。拉枝90°大幅度增加了黔核7号的坚果单质量;拉枝90°和110°时显著提高了蛋白质含量,而90°和110°的拉枝处理之间蛋白质含量差异不显著;并且3个角度的拉枝均明显提高了核仁粗脂肪的含量。然而,3个处理下,坚果的纵径、壳厚、果形指数、出仁率与对照组的差异不显著,说明黔核7号在不同的拉枝角度处理后,核仁的品质在核桃壳外观形态不发生改变的情况下有所提高,分析认为,坚果品质的提高是树体的光合作用增强和矿质元素含量提高的结果。

不同树种或品种对适宜的拉枝角度有特殊的要求。富士苹果在拉枝角度为110°时果实品质最好,嘎拉在拉枝角度为90°时品质表现最佳[11]。乔纳金在拉枝角度120°时果实单果质量、可滴定酸含量和叶片中的钾素含量最高,而拉枝角度为110°时果实质量、叶片单叶鲜质量、叶片厚度、叶绿素含量、叶片净光合速率、蒸腾速率等高于其他处理,枝条抽生中短枝和叶丛枝的数量高于其他处理[6]。本研究表明,黔核7 号在拉枝90°时,枝条的短枝数和中短枝数高于其他处理,雌花数、坐果数、坐果率达到最大值,叶片的光合特性达到最大值;叶片的P、K、Ca、Mg、Fe 元素含量在拉枝60°时最高,N 元素含量在110°处理中为最高,Zn元素含量随拉枝角度的增大而增加;90°的拉枝增加了黔核7 号坚果单果质量、单仁质量、蛋白质含量和粗脂肪含量,而果形指数、壳厚、出仁率变化不明显。同样地,90°拉枝增加了温185和绿岭2种早实核桃的成枝率和坐果率,并且改善了绿岭核桃的光合作用,提高了绿岭核桃的产量。但绿岭核桃的坚果品质在拉枝45°时表现最好,尽管其在此拉枝角度下产量低于90°拉枝[12-13]。分析认为90°的拉枝角度均适用于早实和晚实核桃,可促进核桃形成结果枝,改善光合作用,提高坐果率和产量。

4 结 论

黔核7号拉枝90°能够增加短枝数和中短枝数,有效改善其光合特性,增加叶片养分含量,大幅提升了其雌花数、坐果数和坐果率,并提高其坚果品质,建议在栽培中把黔核7号枝条拉到90°。

参考文献:

[1]张满让.拉枝角度对苹果生长发育及相关生理特性的影响[D].杨凌:西北农林科技大学,2013.ZHANG Manrang.The effect of branch bending angle on physiological characteristics and growth in apple tree[D].Yangling:Northwest A&F University,2013.

[2]张雯.修剪和拉枝对红富士苹果冠层结构及生长结果的影响[D].杨凌:西北农林科技大学,2010.ZHANG Wen.Research of different branch angle and clip quantity on fuji apple canopy structure growth and fruit influence[D].Yangling:Northwest A&F University,2010.

[3]吕珍珍.拉枝角度对苹果枝条顶梢C、N、P 及内源多胺类物质的影响[D].杨凌:西北农林科技大学,2017.LÜ Zhenzhen.Effect of branch bending angle on carbon,nitrogen,phosphor and endogenous polyamines contents in shoot terminal of apple[D].Yangling:Northwest A&F University,2017.

[4]许家辉,张泽煌,陈长忠,余东,刘友接,郑少泉,刘惠玉.拉枝对枇杷枝梢生长与成花的影响[J].中国南方果树,2004(1):34-35.XU Jiahui,ZHANG Zehuang,CHEN Changzhong,YU Dong,LIU Youjie,ZHENG Shaoquan,LIU Huiyu.Effects of branch drawing on shoot growth and flower formation of loquat[J].South China Fruits,2004(1):34-35.

[5]艾沙江·买买提,阿布都外力·木米尼,王晶晶,刘国杰.富士苹果短截、拉枝对当年生新梢叶片光合特性的影响[J].中国农业大学学报,2013,18(6):126-131.Aimaiti·Aishajiang,Mumini·Abuduwaili,WANG Jingjing,LIU Guojie.Effect of cutting back and branch-bending on photosynthetic characteristics of new shoots[J].Journal of China Agricultural University,2013,18(6):126-131.

[6]李宏建,刘志,王宏,徐贵轩,宋哲.乔纳金苹果树不同拉枝角度对叶片营养物质含量和果实品质的影响[J].西南农业学报,2014,27(2):734-738.LI Hongjian,LIU Zhi,WANG Hong,XU Guixuan,SONG Zhe.Effects of branch bending angle on leaf nitrogen and fruit quality of Jonagold[J].Southwest China Journal of Agricultural Sciences,2014,27(2):734-738.

[7]王磊,姜远茂,彭福田,魏绍冲,葛顺峰,张大鹏,崔同丽.主枝开张角度对盆栽红富士苹果13C 和15N 分配、利用的影响[J].植物营养与肥料学报,2011,17(2):433-437.WANG Lei,JIANG Yuanmao,PENG Futian,WEI Shaochong,GE Shunfeng,ZHANG Dapeng,CUI Tongli.Effects of main branch bending on characteristics of distribution and utilization of13C and15N for Red Fuji[J].Journal of Plant Nutrition and Fertilizers,2011,17(2):433-437.

[8]余拱鑫,韩明玉,张满让,赵彩萍.不同拉枝角度对‘嘎拉’苹果顶芽及叶片碳氮含量的影响[J].北方园艺,2012(15):9-12.YU Gongxin,HAN Mingyu,ZHANG Manrang,ZHAO Caiping.The effect of branch drawing on carbon and nitrogen contents in buds and leaves of‘Gala’apple [J].Northern Horticulture,2012(15):9-12.

[9]苏曼琳,马履一,段劼,吴尚,苏淑钗,敖妍.文冠果叶碳氮含量对人为拉枝干扰的响应机制[J].中南林业科技大学学报,2016,36(8):27-32.SU Manlin,MA Lüyi,DUAN Jie ,WU Shang,SU Shuchai,AO Yan.Response mechanism of human disturbance to the content of carbon and nitrogen in the leaves of Xanthoceras sorbifolia Bunge[J].Journal of Central South University of Forestry &Technology,2016,36(8):27-32.

[10]李晓龙,王超,李甲明,刘伦,吴俊.拉枝处理对‘翠冠’梨成花的影响及其调控机制[J].西北植物学报,2015,35(1):89-97.LI Xiaolong,WANG Chao,LI Jiaming,LIU Lun,WU Jun.Effect and regulation mechanism of branch-drooping on flower bud formation of Cuiguan peer[J].Acta Botanica Boreali-Occidentalia Sinica,2015,35(1):89-97.

[11]李永武,韩明玉,范崇辉,刘宁.不同拉枝角度对苹果果实品质的影响[J].西北农林科技大学学报(自然科学版),2006,34(11):157-159.LI Yongwu,HAN Mingyu,FAN Chonghui,LIU Ning.Effect of different branch angles on apple fruit quality[J].Journal of Northwest Sci-Tech University of Agriculture and Forestry (Nature Science Edition),2006,34(11):157-159.

[12]魏常燕.‘绿岭’核桃拉枝刻芽效应研究[D].保定:河北农业大学,2013.WEI Changyan.Studies on the effects of bending branch and notching bud of‘Lüling’walnut[D].Baoding:Agricultural University of Hebei,2013.

[13]宁万军,黄闽敏,张强,刘旭丽.不同角度拉枝下刻芽摘心处理对‘温185’核桃枝条性状的影响[J].果树学报,2020,37(12):1878-1884.NING Wanjun,HUANG Minmin,ZHANG Qiang,LIU Xuli.Effects of different branch bending angles,notching,and pinching on the characteristics of‘Wen 185’walnut branches[J].Journal of Fruit Science,2020,37(12):1878-1884.

[14]潘学军,樊卫国,张政,彭剑,罗焜.核桃新品种黔核7 号[J].园艺学报,2015,42(7):1411-1412.PAN Xuejun,FAN Weiguo,ZHANG Zheng,PENG Jian,LUO Kun.A new walnut cultivar‘Qianhe 7’[J].Acta Horticulturae Sinica,2015,42(7):1411-1412.

[15]宋斌,刘茂桥,张文娥,张睿,彭剑,王长雷,潘学军.贵州核桃主产区核桃园土壤养分丰缺状况[J].中国土壤与肥料,2020(6):65-74.SONG Bin,LIU Maoqiao,ZHANG Wen’e,ZHANG Rui,PENG Jian,WANG Changlei,PAN Xuejun.Status of soil fertility in walnut orchard areas of Guizhou[J].Soil and Fertilizer Sciences in China,2020(6):65-74.

[16]李晶晶,潘学军,张文娥.铁核桃叶片矿质元素和内源激素含量与雌花芽分化的关系[J].西北植物学报,2016,36(5):971-978.LI Jingjing,PAN Xuejue,ZAHNG Wen’e.Relationship between mineral nutrition,hormone content and flower bud differentiation of Juglans sigillata[J].Acta Botanica Boreali-Occidentalia Sinica,2016,36(5):971-978.

[17]张志华,裴东.核桃学[M].北京:中国农业出版社,2018.ZHANG Zhihua,PEI Dong.Walnut science[M].Beijing:China Agricultural Press,2018.

[18]郭素萍,李保国,赵健健,张雪梅.‘绿岭’核桃开花特性及石硫合剂疏花技术研究[J].林业实用技术,2012(11):10-12.GUO Suping,LI Baoguo,ZHAO Jianjian,ZHANG Xuemei.Study on the flowering characteristics of‘Lüling’walnut and the flower relaxing technique of lime sulfur[J].Practical Forestry Technology,2012(11):10-12.

[19]常月梅.核桃树体微环境与枝条干枯发生的关系[J].经济林研究,2017,35(4):185-191.CHANG Yuemei.Relationship between tree micro-environment and occurrence of shoot wilting in walnut[J].Non-wood Forest Research,2017,35(4):185-191.

[20]高俊山,蔡永萍.植物生理学实验指导[M].北京:中国农业大学出版社,2018.GAO Junshan,CAI Yongping.Experimental guidance of Plant Physiology[M].Beijing:China Agricultural University Press,2018.

[21]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,2000.LU Rukun.Analysis methods of soil agricultural chemistry[M].Beijing:China Agricultural Science and Technology Press,2000.

[22]张玉星.果树栽培学总论[M].北京:中国农业出版社,2011.ZHANG Yuxing.General introduction of fruit tree cultivation[M].Beijing:China Agriculture Press,2011.

[23]韩明玉,李永武,范崇辉,赵彩萍.拉枝角度对富士苹果树生理特性和果实品质的影响[J].园艺学报,2008,35(9):1345-1350.HAN Mingyu,LI Yongwu,FAN Chonghui,ZHAO Caiping.Effects of branch bending angle on physiological characteristics and fruit quality of Fuji apple[J].Acta Horticulturae Sinica,2008,35(9):1345-1350.

[24]冯毓琴,张永茂,李翠红,慕钰文,李长亮,魏丽娟.拉枝角度对‘烟富6 号’苹果树生长、生理特性及果实品质的影响[J].中国果树,2016(6):1-7.FENG Yuqin,ZHANG Yongmao,LI Cuihong,MU Yuwen,LI Changliang,WEI Lijuan.Effects of branch pulling angle on growth,physiological characteristics and fruit quality of‘Yanfu 6’apple tree[J].China Fruits,2016(6):1-7.

[25]位杰,蒋媛,马建江,石蕾.拉枝角度对库尔勒香梨枝叶生长及果实品质的影响[J].西北林学院学报,2018,33(3):111-116.WEI Jie,JIANG Yuan,MA Jianjiang,SHI Lei.Effects of branch bending angle on the branch and leaf growth and fruit quality of Korla Fragrant pear[J].Journal of Northwest Forestry University,2018,33(3):111-116.

[26]戴文圣,王白坡,钱银才,丁笑章.拉枝对不同品种幼龄梨树生长结果的影响[J].浙江林学院学报,1996,13(2):123-129.DAI Wensheng,WANG Baipo,QIAN Yincai,DING Xiaozhang.Branch drawing influence on growth and fruit setting for young tree of peer varieties[J].Journal of Zhejiang Forestry College,1996,13(2):123-129.

Effects of branch bending angle on leaf nutrition, flower formation and nut quality of Qianhe 7 walnut

CAI Hu1, ZHANG Wen’e1, WU Lang1, FAN Weiguo1, WANG Jinjin1, PENG Jian2, JIANG Hui2, CAO Jingfu2,PAN Xuejun1*

(1College of Agriculture/ Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guizhou 550025, Guiyang, China;2Walnut Industry Bureau of Hezhang,Hezhang 553200,Guizhou,China)

Abstract:【Objective】The study aimed to explore the effects of branch bending angle on physiological growth,flower and fruit setting and fruit quality of Juglans sigillata Dode in order to provide scientific basis for high-quality and high-yield cultivation of Qianhe 7.【Methods】In 2017, the high-quality and late fruiting walnut Qianhe 7 was used as the test material, and the branches with natural growth and opening angle between 30°-35° were used as the control (CK).Except for the central trunk, the other branches were bended to 60°,90°and 110°respectively.In November 2018,the branch lengths of each treatments, were measure and the branches were divided into 3 groups, that is, long branch (> 30 cm),medium branch (15-30 cm) and short branch (<15 cm).In the middle of April 2018, the number of female flower buds and male flower buds on walnut trees were investigated and the ratio of the male flower buds to the female flower buds was calculated.The number and type of branches after branch pending,the number of flowers and fruit setting were counted,and the fruit setting rates were calculated.On August 24, 2018, the photosynthetic characteristics of the leaves in the inner, middle and outer parts oftrees were measured by portable Li-6400 photosynthetic apparatus and the contents of chlorophyll a, b and carotenoid were determined by spectrophotometry.The contents of N in the leaves were determined by Kjeldahl method,P,K,Ca,Mg,Fe,Mn and Cu in the leaves were determined by vanadium molybdenum yellow colorimetry, and the contents of Zn in the leaves were determined by atomic absorption spectrophotometry.The crude fat content of walnut nut was determined according to GB 5009.6—2016,and the protein content was determined according to GB 5009.5—2016.【Results】Only the number of the medium and the long branches increased significantly when the branches were bended at 60°in previous year.The total number of branches,the number of short branches and the number of medium and long branches of Qianhe 7 increased significantly when the branches were bended at 90°in previous year.The total number of branches,short branches and medium-length branches of Qianhe 7 was significantly increased by 36.8%, 64.0% and 81.0% respectively compared with the control;When the bending angle reached 110° at the same time, the number of short branches and medium long branches remained at a high level.When the bending angle was 90°,the number of female flowers,fruit setting and fruit setting rate of Qianhe 7 were significantly increased by 206.6%, 231.1% and 14.1% compared with the control.When the bending angle was 110°.The fruit setting rate of Qianhe 7 also increased;the bending angle at 60° and 110° did not make significant difference in the number of female flowers and fruit setting.The net photosynthetic rate, stomatal conductance, transpiration rate, chlorophyll-a content, chlorophyll-b content and carotenoid content in the inner, middle and peripheral of the trees reached the maximum value when the bending angle was 90°.When the bending angles were 90° and 110° the intercellular CO2 concentration of middle and peripheral leaves were reduced and the contents of P, Ca, Mg and Fe in the leaves were increased compared with the control.The content of the N element in the leaves was the highest when the bending angle was 110°.The content of the K element on the branches with the bending angle at 90° was significantly lower than those of the control, and the treatments of bending angles at 60° and 110°.The content of Zn increased with the increase of branch angle.However,the content of Mn in leaves decreased with the increase of branch angle.The content of the Cu in the leaves was no effected by the bending angle.In the case of not significantly changing the vertical diameter,cross-diameter,fruit index,shell thickness and kernel yield of Qianhe 7,branch bending could promote the accumulation of its kernel weight, protein content and crude fat content.The bending angle at 90°significantly increased the single fruit weight of Qianhe 7 by 6.0%compared with the control.【Conclusion】Branch bending of Qianhe 7 walnut at 90°could increase the number of short branches and medium short branches, and effectively improve the photosynthetic conditions, increase the nutrient content of the leaves, greatly improve the number of female flowers, fruit setting and fruit setting rate,and improve the quality of the nuts.It is suggested that the branch bending at 90°would be an effective way in increasing the production and quality of the nuts of Qianhe 7 walnut.

Key words:Walnut;Branch bending;Photosynthetic characteristics;Flower formation;Nut quality

中图分类号:S664.1

文献标志码:A

文章编号:1009-9980(2022)01-0060-08

DOI:10.13925/j.cnki.gsxb.20210330

收稿日期:2021-07-07

接受日期:2021-09-17

基金项目:贵州林业科研课题(黔林科合[2021]07 号);国家自然科学基金(32060673);贵州省高层次创新型人才培养项目(黔科合人才[2016]4038号);贵州省核桃工程技术研究中心子课题(黔科合平台人才[2019]5202-6号);贵州省生物学一流学科建设项目(GNYL[2017]009)

作者简介:蔡虎,男,在读硕士研究生,主要从事果树种质资源评价与利用研究。Tel:18386113001,E-mail:hucai4545@foxmail.com

*通信作者Author for correspondence.Tel:13885094631,E-mail:pxjun2050@aliyun.com