基于HS-SPME-GC-MS的5份猕猴桃种质风味品质研究

吕正鑫1,2,王海令1,贺艳群1,刘 青1,黄春辉1,贾东峰1,徐小彪1*

1江西农业大学农学院·猕猴桃研究所,江西 南昌 330045;2上海交通大学农业与生物学院,上海 200240)

摘 要:【目的】以5份猕猴桃种质果实为研究材料,分析不同种质的糖酸含量、香气物质构成及感官特征,明确种间差异,为开展猕猴桃果实风味评价、品种改良及新品种选育提供参考依据。【方法】使用顶空固相微萃取与气质联用技术(HS-SPME-GC-MS)分别测定不同品种(系)猕猴桃果实的挥发性香气物质,使用感官评价法评定果实风味。【结果】5份猕猴桃种质果实达到软熟状态后的可溶性总糖含量(w,后同)为11.02%~13.66%,可滴定酸含量为1.15~1.51%,糖酸比为8.50~11.35。共检测出6大类57种有效香气化合物,其中醛、醇、烷、酯、萜烯和其他类分别为3、8、1、22、13和10种,相对含量最高的化合物分别为萜品油烯、丁酸乙酯和2-己烯醛;5份种质分别检测出的香气物质数量为19(苌楚2号)、30(赣猕6号)、18(赣红7号)、21(麻毛10号)和26种(麻毛13号);各种质的主要香气物质也存在差异,酯类物质是苌楚2 号、赣红7 号和麻毛13 号中的主要香气物质类型,萜烯类物质是赣猕6 号和麻毛10 号中的主要香气物质类型。感官评价综合得分最高的品种(系)为赣猕6号,其次为麻毛13号。【结论】基于糖酸含量、糖酸比、香气物质测定及感官评价探讨了猕猴桃风味品质,明晰了不同猕猴桃种质风味品质的差异。

关键词:猕猴桃;HS-SPME-GC-MS;风味;香气物质;感官评价

猕猴桃为猕猴桃科(Actinidiaceae)猕猴桃属(Actinidia Lindl.)雌雄异株大型落叶木质藤本植物[1],风味独特,口感鲜美,富含抗坏血酸和多种矿物营养,保健功效较多,是当今世界备受青睐的重要水果作物之一[2]。风味是评价果实品质的重要指标之一,风味由酸味、甜味和香味组成,其中酸味、甜味决定食用口感,香气物质对果实感官品质评价也起到重要的作用[3]。风味研究已在许多果树作物中广泛开展,如葡萄、樱桃和草莓[4-6]。猕猴桃的香味一般被广泛地描述为草莓、香蕉和菠萝三者气味的混合[7],香气随着果实的成熟而产生,在采后贮藏过程中不断发生变化[8-9],从成熟至软熟阶段的香气物质数量随成熟度增加而逐渐增加[10],而到达成熟期之前的贮藏期延长会导致香气物质数量减少[11]。迄今已在猕猴桃中检测出多种香气化合物,包括酯类、醛类和醇类等,香气的表达是多种香气化合物综合作用产生的结果,但一般含量较高或香气特征明显的化合物可以在很大程度上赋予果实特殊的香气属性[12-13]。目前猕猴桃香气研究从生理、分子等层面展开,主要包括香气物质遗传多样性分析、外源因素对香气物质的影响、采后贮藏过程中香气物质的变化等领域[14-16]

目前在猕猴桃香气研究中广泛应用顶空固相微萃取法与气质联用法(HS-SPME-GC-MS)结合提取分离挥发成分,在酿酒、食品及烟草等方面均有较多研究[17-20]。Zhang等[21]对3个商业栽培品种猕猴桃的挥发性指纹图谱和生物标记物进行了研究,从指纹图中分析了95 种挥发物,最终确定其中6 种为研究猕猴桃品种的挥发物生物标记物;李盼盼等[22]对美味猕猴桃布鲁诺果实在贮藏过程中的挥发性成分研究后发现,酯类物质为主要香气物质,且低温有利于维持果实的风味品质;赵义挺等[23]以米良1 号为材料,研究不同贮藏条件下的香气物质变化,结果表明低温贮藏后的果实,其烃类与酯类物质的相对含量增加,醛类与醇类物质含量则减少。目前猕猴桃香气研究不仅集中于香气物质的差异分析,关键香气物质的鉴定研究也越来越多被研究者所关注。近来,Zhao等[24]利用HS-SPME-GC-MS与GC-IMS对3个猕猴桃品种的香气物质进行分析,并应用偏最小二乘回归法(PLSR)分析了不同香气物质与果实属性的相关性,结果表明,果实香气属性与丁酸乙酯、己酸甲酯和苯甲酸己酯含量呈正相关,青草的香气可能主要来自(E)-2-己烯醛、3-己烯醛、己醇和(E)-2-己烯-1-醇,甜味与丁酸甲酯、丁酸乙酯和己酸甲酯等酯类物质相关性较高;赵玉等[25]从4 个品种猕猴桃中共鉴定出48 种香气物质,并通过GC-O 法对香气物质的轮廓进行分析,最终成功筛选出关键香气组分丁酸乙酯、己酸乙酯、C6不饱和醛、葵醛、反式-2-壬醛、顺,反-2,6-壬二烯醛、己醇、1-辛烯-3-醇和1-戊烯3-酮。

感官评价是研究感官的一种重要工具,是一种以人的感官对食品风味进行评判的技术,通过对参评人员对食品的色、香、味、形、质地等评价后得出的感官数据进行收集、统计与分析,最终对食品的风味特征进行量化[26-27]。目前在果树作物中已有较多感官评价方面的研究,如Amyotte 等[28]将感官评价与全基因组关联分析相结合对苹果的感官品质进行分析,发现包括多汁性、酥脆性、粉状与新鲜青苹果风味在内的几个感官性状存在显著的基因组关联;Karagiannis等[29]对甜樱桃的理化和感官品质进行综合测定后发现,不同品种间的香气、颜色、质地特性等感官属性存在较大差异,并筛选出较受消费者欢迎的品种。随着经济的发展,人们对食品尤其是鲜食食品的风味要求越来越高,以机器为导向的技术检测往往会与人类感知存在一定偏差,而以人类感知为导向的感官评价这一技术手段能较好地弥补这方面的不足。

笔者在本研究中选用的5个猕猴桃品种(系)均为江西省境内调查发现的性状较优良的经人工驯化而来的野生猕猴桃资源,测定其可溶性总糖、可滴定酸及香气物质含量等对果实风味起主要作用的指标,并对感官品质进行评价与分析,以期探明不同猕猴桃品种(系)间的差异,同时为开展猕猴桃果实风味特性评价、品种改良及新品种选育提供参考依据。

1 材料和方法

1.1 试验材料

笔者在本试验中所用的5 份猕猴桃种质如图1所示,分别为苌楚2号(中华猕猴桃A.chinensis)、赣猕6 号(毛花猕猴桃A.eriantha)、赣红7 号(中华猕猴桃A.chinensis)、麻毛10 号(毛花猕猴桃A.eriantha)和麻毛13号(毛花猕猴桃A.eriantha)。供试材料均保存于江西省信丰县油山农场内的猕猴桃种质资源圃,常规田间管理。当果实达到商业采摘标准时(即可溶性固形物含量达到7%)进行采摘,每份种质选择生长势一致且无病虫害的5 棵植株,每株均匀采摘20 个端正、无机械伤的果实,所有果实去除田间热后带回实验室清洗干净表皮并晾干,盖上报纸防止过度失水,置于室温下自然软熟,达到软熟状态后进行样品制备及相关指标测定。

图1 5 个猕猴桃品种(系)果实
Fig.1 The fruit of five kiwifruit cultivars(strains)

1.2 试验方法

1.2.1 糖酸含量及成熟度测定 可溶性总糖含量:参考Liao 等[30]改进后的蒽酮比色法测定,每份种质选取10 颗果实,去除外果皮和果心后混匀冻样备用,每个品种(系)6次重复。

可滴定酸含量:参考陈屏昭等[31]的NaOH 中和滴定法测定,以柠檬酸含量为系数进行换算,每个品种(系)6次重复。

可溶性固形物含量:使用ATAGO(PAL-1)手持数显式糖度计测定,每个品种(系)在达到成熟期后各测定30个果实。

果肉硬度:每个品种(系)随机取10 个果实,洗净擦干并剥离果皮,用打孔器取果实中部皮下0.5 mm处,1.5 cm(直径)×1 cm(高)果肉圆柱,用质构仪(型号为SMSTA-XT plus)测定其硬度,测试模式:TPA,探头型号:p/5,测试速率:0.5 mm·s-1,不同品种(系)的压缩变形量:5/10 mm,每个果实在赤道处均匀测试4次。

1.2.2 香气物质的测定 HS-SPME样品提取:称取8 g使用液氮研磨成粉后的果肉,装入20 mL顶空瓶中,加入5 mL 饱和氯化钠溶液后密封。于40 ℃水浴恒温平衡20 min 后,将经250 ℃老化后的65 μm PDMS/DVB(美国Supelco公司)萃取针萃取40 min,然后将萃取针插入气相质谱仪(Agilent7890A-5975,美国)进样口解析(250 ℃,5 min)。

GC设置:色谱柱为DB-WAX毛细色谱柱(30 m×0.25 mm×0.25 μm,美国安捷伦公司)。以不分流模式手动进样,升温模式:初始温度40 ℃,2 min 后以2 ℃·min-1速率升至60 ℃,1 min后以5 ℃·min-1速率升至200 ℃,再以30 ℃·min-1速率升至250 ℃,保持5 min。载气为高浓度氦气,流速为1.2 mL·min-1

MS 设置:扫描范围为30~500 m/z,电子能量模式为调谐设置,EI电离模式,离子温度230 ℃。

物质定性:未知化合物图谱经计算机检索与NIST 14 质谱库比对,确定挥发性物质化学成分。定量方法:按峰面积归一化法求得各成分相对百分比含量。每个品种(系)进行3次重复。

1.2.3 感官评价 8 人组成感官评价小组,所有参评价人员接受过初级感官评定训练,可以进行初级感官评估,具有良好的感官感知能力和对感官疲劳的高度耐受性。当对食品进行反复检查时,他们可以复制原始结果。此外,还进行了猕猴桃风味评估的标准化培训。对于感官评估,从每个品种(系)中选择10 个猕猴桃以供测试,测试指标包括酸度、甜度和含水量等。评估一个样本后,小组成员漱口休息15 min,然后再评估下一个样本,评分区间设置为1~10 min,为减少个体差异带来的误差,每个品种(系)分别测试3个不同果实,分别计分,最终汇总得分并计算各项指标的平均值。

1.3 数据分析

使用Excel 2014与SPSS 24.0对数据进行整理、统计学分析及表格制作,使用Origin 2021 与R studio绘图。

2 结果与分析

2.1 不同品种(系)猕猴桃果实糖酸含量分析

果实达到软熟状态时的可溶性固形物含量及果肉硬度如图2 所示,赣红7 号的可溶性固形物含量(w,后同)最高,为19.23%,其次为麻毛10 号(16.36%),最低的为麻毛13 号(13.53%);果肉硬度最大的为麻毛13 号(14.31 N),其次为麻毛10 号(13.03 N),最小的为赣红7号(7.35 N)。

图2 不同品种(系)猕猴桃可溶性固形物含量及硬度
Fig.2 The soluble solid content and flesh firmness in different kiwifruit cultivars(strains)

不同小写字母表示差异显著(p<0.05),置信区间为5%~95%,下同。
Different small letters indicate significant differences(p<0.05),the confidence interval is 5%-95%.The same below.

通过计算可溶性总糖含量与可滴定酸含量的比值可以得出糖酸比,作为一项综合指标,其可以反映果实的甜酸味,很大程度上影响着风味的表现。各品种(系)猕猴桃的可溶性总糖与可滴定酸含量见图3,总糖含量最高的为麻毛13号(13.66%),最低的为麻毛10 号(11.02%);可滴定酸含量最高的为苌楚2号(1.51%),最低的为赣红7 号(1.20%)。5 个品种(系)中糖酸比最大的为麻毛13号(11.35),最低的为苌楚2号(8.50)。

图3 不同品种(系)猕猴桃的糖酸含量及糖酸比
Fig.3 Contents of sugars and acid and sugar to acid ratio in different kiwifruit cultivars(strains)

2.2 不同猕猴桃品种(系)果实香气物质分析

5 个品种(系)猕猴桃的HS-SPME-GC-MS 总离子流示意图如图4所示。通过对出峰情况的分析可以发现,达到软熟状态的不同品种(系)猕猴桃的香气物质在种类与含量上存在较大差异,苌楚2 号与赣红7 号、赣猕6 号与麻毛10 号的最大峰出现时间及峰高接近,但最大相对含量物质及其余香气物质种类及含量间仍存在一定差异。从出峰的丰度来看,赣猕6号与麻毛13号最高。

图4 不同品种(系)猕猴桃中香气物质的总离子流示意图
Fig.4 Total ion current flow diagrammatic sketch of aroma substances in different kiwifruit cultivars(strains)

5个品种(系)猕猴桃中共检测出57种香气物质(表1),香气物质种类最多的为赣猕6号(30种),其次为麻毛13号、麻毛10号、苌楚2号、赣红7号,分别为26、21、19、18 种,毛花猕猴桃中的香气物质普遍多于中华猕猴桃。苌楚2号中相对含量最高的香气物质为丁酸乙酯,相对含量为55.97%,其次为2-己烯醛,相对含量为28.62%,其中异丁酸戊酯(0.24%)、异丁酸丁酯(0.26%)和丁酸异丁酯(0.44%)等香气化合物只在该品系中出现;赣猕6号中相对含量最高的为α-异松油烯(54.10%),其次为正己醇(12.77%),其中正戊醇(0.83%)、异氰酸酯(0.14%)和乙酸戊酯(0.47%)等只在该品种中出现;赣红7 号中相对含量最高的香气物质为丁酸乙酯(48.59%),其次为丁酸甲酯(12.38%),其中异丁酸丙酯(0.21%)、己酸甲酯(1.49%)和苏合香烯(3.15%)等只在该品系中出现;麻毛10 号中相对含量最高的香气物质为萜品油烯(82.69%),其次为d-柠檬烯(4.85%),其中环戊烷(0.29%)、硫酸二丁酯(0.18%)和水杨酸甲酯(1.02%)等只在该品系出现;麻毛13 号中相对含量最高的香气物质为丁酸乙酯(43.78%),其次为d-柠檬烯(13.61%),其中丁酸戊酯(0.16%)、甲酰胺(0.17%)和苯甲酰肼(0.25%)等只在该品系出现。2-己烯醛、正己醇和对二甲苯在5个品种中都被检测出,己醛、壬醛、丁酸乙酯和d-柠檬烯在4个品种(系)中均有检出。

表1 不同品种(系)猕猴桃果实香气物质种类及相对含量
Table 1 Types of aroma substances and their relative contents in different kiwifruit cultivars %

化合物种类Compound type香气物质Aroma compounds苌楚2号Changchu-2赣猕6号Ganmi-6赣红7号Ganhong-7麻毛10号Mamao-10麻毛13号Mamao-13醛类Aldehyde 5.57 10.19—12.68 12.83 0.11醇类Alcohol 8.36 28.62 0.41 0.44 0.54 0.96 1.85 5.72 0.62—0.87 12.77 0.83 0.28 0.22 0.75————己醛Hexanal 2-己烯醛2-Hexenal壬醛Nonanal 2-(2-羟基丙氧基)-1-丙醇2-(2-Hydroxypropoxy)-1-propanol反式-2-己烯醇Trans-2-hexenol正己醇1-Hexanol正戊醇1-Pentanol 4-甲基-1-己醇1-Hexanol,4-methyl-1-(4-甲基苯基)乙醇1-(4-Methylphenyl)ethanol 4-萜烯醇Terpinen-4-ol对甲基苯异丙醇P-methylphenyl isopropyl alcohol环戊烷Cyclopentane丁酸甲酯Methyl butyrate异丁酸戊酯Amyl isobutyrate异丁酸丁酯Butyl isobutyrate 3-甲基戊酸乙酯Ethyl 3-methylvalerate苯甲酸甲酯Methyl benzoate苯甲酸乙酯Benzoic acid,ethylester异氰酸酯Isocyanic acid乙酸乙酯Ethyl Acetate乙酸戊酯Acetic acid,pentylester苯乙酮酸-异丙酯Phenylglyoxylic acid,isopropyl ester乙酸己酯Acetic acid,hexylester异丁酸丙酯Propyl isobutyrate己酸甲酯Hexanoic acid,methylester丁酸丁酯Butanoic acid,butylester已酸乙酯Hexanoic acid,ethylester硫酸二丁酯Urea,2-propenyl-二乙醇酸二(3-苯基丙基)酯Di(3-phenylpropyl)diglycolic acid水杨酸甲酯Methyl salicylate丁酸戊酯Butanoic acid,pentylester丁酸异丁酯Isobutyl butyrate辛酸乙酯Octanoic acid,ethylester丁酸乙酯Ethyl butyrate 3,3-二甲基-1-戊烯1-Pentene,3,3-dimethyl-双环[3.2.0]庚-2,6-二烯Bicyclo[3.2.0]hepta-2,6-diene 5,5-二甲基环戊二烯5,5-dimethylcyclopenta-1,3-diene月桂烯Myrcene d-柠檬烯d-Limonene α-异松油烯α-Terpinolene 1,3,8-p-薄荷烯1,3,8-p-Menthatriene苏合香烯Styrene 3-侧柏烯3-Thujene对伞花烃p-Cymene萜品油烯Terpinolene 2,3-二甲基-1-己烯Undecane,3-methylene-螺[2.4]庚-4,6-二烯Spiro[2.4]hepta-4,6-diene 0.45 0.77—0.30 0.27 0.19——0.30—0.19————烷类Alkane酯类Ester——0.15 0.23 0.62 0.29 0.36 0.24 0.26 0.72 0.19 0.51——12.38 0.07—0.05—0.50——8.56————0.14 0.24 0.47 0.20 1.95——2.35—0.19——0.21 1.49 2.42 1.08————1.16 6.67——0.18 0.16 1.02————48.59 0.22 0.16 0.52 0.59 43.78萜烯类Terpene 0.44—55.97 0.19——0.14 0.33 0.50 12.62 54.10 0.24——————2.05 0.15 13.61————3.15——0.14 4.85—1.10—2.09 1.95 82.69——1.12——0.09 2.76 0.12—

续表Continued Table

注:“—”表示未检出。
Note:“—”indicates no detection.

化合物种类Compound type香气物质Aroma compounds苌楚2号Changchu-2赣猕6号Ganmi-6赣红7号Ganhong-7麻毛10号Mamao-10麻毛13号Mamao-13其他Others 2-乙酰基-2-甲基四氢呋喃2-Acetyl-2-methyltetrahydrofuran ————对二甲苯p-Xylene间二甲苯Benzene,1,3-dimethyl-甲基庚烯酮5-Hepten-2-one,6-methyl-6-甲基-,3-庚酮3-Heptanone,6-methyl-顺-2-(2-戊烯基)呋喃Cis-2-(2-Pentenyl)furan 2-正丁基呋喃2-Butylfuran苯丙酮Benzedrone甲酰胺Formamide苯甲酰肼Benzoic acid,hydrazide 0.28 0.25 0.10 0.31 0.56—0.20 0.40 0.07 0.14—0.19——0.50 0.08 0.28 0.58 0.10 0.21 0.14————————0.17 0.25

2.3 不同品种(系)猕猴桃各类型香气物质分析

5 个品种(系)猕猴桃中主要检测出醇、烷、醛、酯和萜烯等几大类香气物质,不同类型香气物质在各品种(系)中的占比情况如图5 所示。苌楚2 号中相对含量最高的香气物质类型为酯类(占比59.19%),其次为醛类物质(占比37.71%);赣猕6 号中主要香气物质类型为萜烯类(占比70.23%),其次为醇类(占比16.25%);苌楚2 号中主要类型为酯类(占比76.21%),其次为醛类(占比16.07%);麻毛10号中主要类型为萜烯类(占比94.76%),其次为酯类(占比1.61%);麻毛13 号中主要类型为酯类(占比56.30%),其次为醛类(占比25.79%)。赣猕6 号与麻毛10 号中的萜烯类物质相对含量占比均>70%,其余3个品系中的酯类物质相对含量占比均>50%。

图5 各类型香气物质在不同品种(系)猕猴桃中的相对含量占比
Fig.5 Proportion of aroma types in different cultivars(strains)of kiwifruit

2.4 不同品种(系)猕猴桃主要香气物质分析

筛选出5个品种(系)猕猴桃中相对含量占比最高的两种化合物,相对含量占比均达到各品种(系)总香气物质含量的55%以上,共7种香气化合物,其在不同品种(系)中的相对含量如图6 所示,丁酸乙酯、α-异松油烯和萜品油烯的相对含量较高,均>40%,都为各自品种(系)中相对含量最高的香气化合物。对这7种香气进行描述,结果如表2所示,丁酸乙酯和丁酸甲酯主要表现为果香、甜香,2-己烯醛和正己醇均表现出较明显的青草味,萜品油烯表现为较浓郁的柠檬味,α-异松油烯表现为典型的偏甜的柑橘味,d-柠檬烯表现为偏甜的柠檬味。

表2 7 种主要香气物质的香气描述
Table 2 Description of 7 main aroma substances

香气物质Aroma substance丁酸乙酯Ethyl butyrate α-异松油烯α-Terpinolene萜品油烯Terpinolene 2-己烯醛2-Hexenal正己醇1-Hexanol丁酸甲酯Methyl butyrate d-柠檬烯d-Limonene香气描述Aroma description果香,甜香Fruital,sweet aroma甜香,柑橘味Sweet aroma,citrus flavor柠檬味Lemon flavour青草味Grass flavor青草味Grass flavor果香,甜香Fruital,sweet aroma甜香,柠檬味Sweet aroma,lemon flavour定性方式Qualitative method MS MS MS MS MS MS MS

图6 不同品种(系)猕猴桃中相对含量最高的2 种香气物质
Fig.6 Two highest of aroma substances in different cultivars(strains)of kiwifruit

2.5 不同品种(系)猕猴桃的感官评价

对5 个品种(系)猕猴桃果实进行感官评价,从果肉硬度、含水量和甜度等7 个感官指标进行测试与评价,具体评分标准如表3所示。图7为感官评价的最终得分,硬度得分最高的品种(系)为麻毛13号,最低的为赣红7 号;含水量得分最高的为苌楚2号,最低的为麻毛13 号;甜度得分最高的为苌楚2号,最低的为麻毛10 号;酸度得分最高的为麻毛10号,最低的为苌楚2号;猕猴桃味得分最高的为赣红7号,最低的为赣猕6号;芳香味得分最高的为赣猕6号,最低的为苌楚2 号;过熟味得分最高的为赣猕6号,最低的为苌楚2 号。感官评价综合得分依次为赣猕6 号(46.37)、麻毛13 号(46.19)、赣红7 号(45.98)、麻毛10 号(45.30)和苌楚2 号(42.90)。麻毛13号因较低的含水量与较高的硬度,使其口感更清爽,酸甜度适中,且香味较明显,风味描述关键词为“爽滑、清香”;赣猕6 号的硬度与含水量适中,口感更加细腻,芳香味较浓,且几乎没有过熟味,风味描述关键词为“软糯、甜香”;赣红7号的硬度低且含水量高,口感较为细腻,但酸度与过熟味较高,一定程度上降低了感官品质,风味描述关键词为“细腻、酸甜”。综合来看,麻毛13号的综合感官评价最佳,其次为赣猕6号和赣红7号。

表3 感官测试评分标准
Table 3 Scoring criteria for sensory evaluation

感官特征Organoleptic properties硬度Firmness含水量Water content甜度Sweetness酸度Sourness猕猴桃味Kiwifruit flavor芳香味Acetic odor过熟味Overripe taste评分标准Rating scales 1过软Too soft较少Few不甜Not sweet非常酸Specia sour不浓Light不浓Light非常浓Specia thick 3 5 7 9较软Soft少Less微甜Slightly sweet很酸Slightly sour稍浓Slightly thicker稍浓Slightly thicker很浓Very thick适中Moderate中Moderate中Moderate较酸Sour浓Thick浓Thick浓Thick硬Hard多Major较甜Sweeter微酸Very sour很浓Very thick很浓Very thick稍浓Slightly thicker过硬Tough丰富Rich非常甜Very sweet不酸Not sour非常浓Specia thick非常浓Specia thick无Little or none

图7 不同品种(系)猕猴桃感官评价得分矩阵热图
Fig.7 Matrix heat map of sensory evaluation scores of different cultivars(strains)kiwifruit

3 讨 论

猕猴桃果实的风味主要由糖、酸、多酚及香气物质构成,笔者主要探讨了糖酸含量、糖酸比及香气物质对果实风味的影响[32]。果实中的糖以蔗糖、果糖和葡萄糖为主,酸以柠檬酸、苹果酸和酒石酸为主,其种类与含量因果实品种及成熟期有较大差异[33]。目前基于糖酸的果实风味研究主要集中于不同品种、不同处理间的糖酸含量及组分差异,如刘婉君等[34]发现花粉直感效应会导致鸭梨果实的糖、酸在含量与组分上均产生差异,并且会抑制/促进某些香气化合物的产生;刘青等[35]对毛花猕猴桃进行套袋处理后发现,白色袋在一定程度上提高可溶性总糖与可滴定酸的含量,并且使果肉的硬度得到较大幅度的提高。糖酸比可以反映果实的口感,更高的总糖含量、更低的总酸含量往往会使果实呈现更甜的口感[36]。果树中常见的多酚类物质主要有黄酮醇、儿茶素、花色素、原花色素等黄酮类与非黄酮类物质,多酚类物质常用以评价柿、葡萄、樱桃等多酚物质含量较高的果实风味品质[37-38]。本研究中麻毛13号的糖酸比最高,正是其较高的可溶性总糖含量与较低的可滴定酸含量所致,而苌楚2 号的糖含量虽然也比较高,但由于其酸含量较高,导致糖酸比较低,所以果实的整体口感不如其余4个品种(系)甜,这也与感官评价中的酸度得分较低这一结果一致。

不同香气物质的生物学特性和功能也各不相同,但主要都是在果实初生代谢途径和次生代谢途径中产生的[39]。不同香气物质的混合造就了不同水果的不同气味,其种类和含量也因果实品种不同而存在较大差异[40]。水果中香气物质的主要类型为醛类、酮类、酯类、醇类、烯萜类及含硫化合物,这些挥发性成分中某些气味浓烈,某些气味较弱甚至无味,但当这些物质混在一起时就会使果实呈现出某些芳香特征[41]。果树的风味物质组分和含量主要受基因型控制,分子机制方面在其他果树上也有一定研究,如董婧等[42]以6 个中华猕猴桃品种为材料,对其香气物质差异及其相关生物合成基因的表达模式进行分析,共鉴定出92 种香气化合物,并筛选出与猕猴桃后熟过程中香气成分差异表达有高度关联性的AcATs16AcLox2AcTPS1 基因;如砀山酥梨的全基因组测序已完成,可为其果实香气成分的形成、释放及调控关键基因等研究提供分子机制和数据支持[43]。栽培方式及贮藏措施也会在很大程度上对香气物质产生影响,即环境因素也是关键因素之一。目前在猕猴桃香气成分研究中已报道的香气成分已超过80种,其中主要成分有丁酸乙酯、丁酸甲酯、己醛、(E)/(Z)-己烯醛、(E)/(Z)-3-己烯醇以及苯甲酸甲酯等[12]。前人研究认为丁酸乙酯、2-己烯醛和己醛很可能是决定猕猴桃香味的三种挥发性成分,这三者均为C6 不饱和化合物,均呈现较强烈的青草味,本研究中的麻毛10 号未能检出己醛、赣猕6 号未能检出丁酸乙酯,分析认为这是遗传上的差异所致[44-46]。不同品种(系)猕猴桃中检出的香气物质种类、数量及相对含量上存在一定差异,且在各品种(系)中均检测出独有的香气物质,如苌楚2 号中的异丁酸戊酯、赣猕6号中的正戊醇、赣红7号中的己酸甲酯、麻毛10 号中的环戊烷、麻毛13 号中的苯甲酰肼,正是这些差异导致了每个品种(系)的猕猴桃都有其较为独特的香气特征。此外,笔者在本试验中发现香气物质中存在某些同分异构体,如麻毛10号中的d-柠檬烯(C10H16),其是柑橘精油的主要成分,具有消炎、减痛、抑菌、预防和治疗癌症的作用[47]。两个出峰时期的RT值分别为13.990、15.601 min,RT 差分别为-1.976、-1.365 min,单一通过GC-MS的检测手段目前还无法判断果实中的香气成分具体来源于何种异构体或是否若干个异构体同时存在,需要运用核磁共振、气相色谱-嗅闻技术和液相色谱-质谱联用等技术手段相互结合以确定这些因素的影响[48-50]

食品风味的评判最终都是以人的感官为主要指标,香气物质的感官价值和生理价值都较高,影响人的食欲甚至消化系统[51]。Elortondo 等[52]在进行感官试验前对评价员的色彩感、气味和滋味等感知的辨别能力进行测试,并按照评级要求对评价员进行不同等级的测量标度培训;Pinto等[53]在确保评价员符合评价标准的前提下,为了进一步标准化评判准则,基于克朗巴哈系数法提出了检验评价小组一致性的方法。本试验中,果肉的硬度与感官硬度及组织状态呈正相关,与果实含水量(多汁性)呈负相关,这与张杨等[54]在海沃德上的研究结果一致,但风味结果存在差异,推测是品种及处理的差异所致。感官评价存在一定的人为误差,为了提高准确性,近年来有学者将感官评价与数学方法、仪器分析相结合,以减少误差[55]。感官评价究其根本是对食品的感官品质进行科学、准确的评价,使之可被用于对实际生产的指导,也可将社会科学的研究方法与感官评价有机结合,如在感官评价权重确定时与用户调查法结合,将消费者接受度与感官评价相结合,这种结合的方法符合学科交融的趋势,是一种非常有意义的尝试[56]

4 结 论

对5个不同猕猴桃品种(系)的风味物质进行了分析,发现不同猕猴桃品种(系)的可溶性总糖含量、可滴定酸含量、香气物质及感官评价结果都存在差异,麻毛13号的糖酸比最高;苌楚2号、赣猕6号、赣红7 号、麻毛10 号和麻毛13 号分别检测出19、30、18、21 和26 种有效香气化合物,相对含量较高的化合物有己醛、2-己烯醛、正己醇、丁酸甲酯、丁酸乙酯、d-柠檬烯、α-异松油烯等;麻毛13 号的整体感官评价最高,其次为风味更浓的赣猕6 号与果肉更为细腻的赣红7号。本研究明确了不同猕猴桃种质香气物质的种间差异,同时为开展猕猴桃果实风味特性评价、品种改良及新品种选育提供了参考依据。

参考文献:

[1]VARKONYI-GASIC E,LOUGH R H,MOSS S M,WU R M,HELLENS R P.Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172[J].Plant Molecular Biology,2012,78(4/5):417-429.

[2]徐小彪,廖娇,黄春辉,辜青青,曲雪艳,刘善军,陈金印.基于EST-SSR 标记分析猕猴桃种质遗传关系[J].果树学报,2012,29(2):212-216.XU Xiaobiao,LIAO Jiao,HUANG Chunhui,GU Qingqing,QU Xueyan,LIU Shanjun,CHEN Jinyin.Genetic relationships from kiwifruit germplasms based on EST-SSR markers[J].Journal of Fruit Science,2012,29(2):212-216.

[3]WEERAWATANAKOTN M,WU J C,PAN M H,HO C T.Reactivity and stability of selected flavor compounds[J].Journal of Food and Drug Analysis,2015,23(2):176-190.

[4]WANG Y J,YANG C X,LI S H,WANG Y N,ZHAO J B,JIANG Q.Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS[J].Food Chemistry,2009,116(1):356-364.

[5]YE L Q,YANG C X,LI W D,HAO J B,SUN M,ZHANG J R,ZHANG Z S.Evaluation of volatile compounds from Chinese dwarf cherry[Cerasus humilis(Bge.)Sok.]germplasms by headspace solid-phase microextraction and gas chromatography–mass spectrometry[J].Food Chemistry,2017,217:389-397.

[6]王爱华,马红叶,李荣飞,杨仕品,乔荣,钟霈霖.凤梨草莓与黄毛草莓种间杂种果实香气成分的代谢谱分析[J].中国农业科学,2021,54(5):1043-1054.WANG Aihua,MA Hongye,LI Rongfei,YANG Shipin,QIAO Rong,ZHONG Peilin.Metabolic analysis of aroma compenents in two interspecific hybrids from the cross of F.ananassa Duch.and Fragaria nilgerrensis Schlecht[J].Scientia Agricultura Sinica,2021,54(5):1043-1054.

[7]YAUK Y K,GED C,WANG M Y,MATICH A J,TESSAROTTO L,COONEY J M,CHERVIN C,ATKINSON R G.Manipulation of flavour and aroma compound sequestration and release using a glycosyltransferase with specificity for terpene alcohols[J].The Plant Journal,2014,80(2):317-330.

[8]PATERSON V J,MACRAE E A,YOUNG H.Relationships between sensory properties and chemical-composition of kiwifruit(Actinidia deliciosa)[J].Journal of the Science of Food and Agriculture,1991,57(2):235-251.

[9]WAN X M,STEVENSON R J,CHEN X D,MELTON L D.Application of headspace solid-phase microextraction to volatile flavour profile development during storage and ripening of kiwifruit[J].Food Research International,1999,32(3):175-183.

[10]孙颖,张博,李书倩,辛广,孙晓荣,刘长江.野生软枣猕猴桃采后20 ℃贮藏期间外释香气成分变化[J].食品科学,2012,33(8):155-158.SUN Ying,ZHANG Bo,LI Shuqian,XIN Guang,SUN Xiaorong,LIU Changjiang.Changes in aroma components of Actinidia arguta during postharvest storage at 20 ℃[J].Food Science,2012,33(8):155-158.

[11]陈成,王依,杨勇,阎永齐.采收成熟度对‘金艳’猕猴桃果实品质及香气成分的影响[J].中国农学通报,2020,36(31):28-36.CHEN Cheng,WANG Yi,YANG Yong,YAN Yongqi.Effects of maturity stage on fruit quality and aroma components of‘Jinyan’kiwifruit[J].Chinese Agricultural Science Bulletin,2020,36(31):28-36.

[12]GARCIA C V,QUEK S Y,STEVENSON R J,WINZ R A.Kiwifruit flavour:A review[J].Trends in Food Science&Technology,2012,24(2):82-91.

[13]SONG H L,CADWALLADER K R,SINGH T K.Odour-active compounds of Jinhua ham[J].Flavour and Fragrance Journal,2008,23(1):1-6.

[14]孙阳,慈志娟,刘振盼,卢立媛,刘广平,陈喜忠,李仁浩,尤文忠.不同软枣猕猴桃品种果实品质和香气成分差异分析[J].中国果树,2021(5):52-55.SUN Yang,CI Zhijuan,LIU Zhenpan,LU Liyuan,LIU Guangping,CHEN Xizhong,LI Renhao,YOU Wenzhong.Analysis on fruit quality and aroma components of different Actinidia arguta cultivars[J].China Fruits,2021(5):52-55.

[15]HUAN C,ZHANG J,JIA Y,LI S E,JIANG T J,SHEN S L,ZHENG X L.Effect of 1-methylcyclopropene treatment on quality, volatile production and ethanol metabolism in kiwifruit during storage at room temperature[J].Scientia Horticulturae,2020,265:109266.

[16]GARCIA C V,STEVENSON R J,ATKINSON R G,WINZ R A,QUEK S Y.Changes in the bound aroma profiles of‘Hayward’and‘Hort16A’kiwifruit (Actinidia spp.) during ripening and GC-olfactometry analysis[J].Food Chemistry,2013,137(1/4):45-54.

[17]NEŠPOR J,KARABÍN M,ŠTULÍKOVÁ K,DOSTÁLEK P.An HS-SPME-GC-MS method for profiling volatile compounds as related to technology used in cider production[J].Molecules,2019,24(11):2117.

[18]ZHANG W J,CAO J X,LI Z G,LI Q H,LAI X F,SUN L L,CHEN R H,WEN S,SUN S L,LAI Z X.HS-SPME and GC/MS volatile component analysis of Yinghong No.9 dark tea during the pile fermentation process[J].Food Chemistry,2021,357:129654.

[19]BERENGUER C,PEREIRA J A M,CÂMARA J S.Fingerprinting the volatile profile of traditional tobacco and e-cigarettes:A comparative study[J].Microchemical Journal,2021,166:106196.

[20]赵方贵,渠峰,车永梅,姚甲淋,刘新.丛枝菌根真菌对烟草香气相关物质代谢的影响[J].应用生态学报,2020,31(4):1298-1304.ZHAO Fanggui,QU Feng,CHE Yongmei,YAO Jialin,LIU Xin.Effect of arbuscular mycorrhizal fungi on metabolism of aroma substances in tobacco[J].Chinese Journal of Applied Ecology,2020,31(4):1298-1304.

[21]ZHANG C Y,ZHANG Q,ZHONG C H,GUO M Q.Volatile fingerprints and biomarkers of three representative kiwifruit cultivars obtained by headspace solid-phase microextraction gas chromatography mass spectrometry and chemometrics.[J].Food Chemistry,2019,271:211-215.

[22]李盼盼,钟雨,戚雯烨,宋亦超,郑小林.美味猕猴桃‘布鲁诺’果实贮藏过程中乙醇代谢与挥发性成分的变化[J].果树学报,2016,33(7):865-873.LI Panpan,ZHONG Yu,QI Wenye,SONG Yichao,ZHENG Xiaolin.Changes in ethanol fermentation metabolism and volatile metabolites in kiwifruit‘Bruno’during storage at room and low temperature[J].Journal of Fruit Science,2016,33(7):865-873.

[23]陈义挺,赖瑞联,冯新,程春振,钟春水,高敏霞,吴如健.不同贮藏条件下猕猴桃香气成分的变化规律研究[J].热带作物学报,2020,41(6):1251-1256.CHEN Yiting,LAI Ruilian,FENG Xin,CHENG Chunzhen,ZHONG Chunshui,GAO Minxia,WU Rujian.Change of aroma components in different storage conditions of kiwifruit[J].Chinese Journal of Tropical Crops,2020,41(6):1251-1256.

[24]ZHAO Y,ZHAN P,TIAN H L,WANG P,LU C,TIAN P,ZHANG Y Y.Insights into the aroma profile in three kiwifruit varieties by HS-SPME-GC-MS and GC-IMS coupled with DSA[J].Food Analytical Methods,2021,14(5):1033-1042.

[25]赵玉,詹萍,王鹏,田洪磊.猕猴桃中关键香气组分分析[J].食品科学,2021,42(16):118-124.ZHAO Yu,ZHAN Ping,WANG Peng,TIAN Honglei.Analysis on the key aroma compounds in kiwifruit[J].Food Science,2021,42(16):118-124.

[26]曾习,曾思敏,龙维贞.食品感官评价技术应用研究进展[J].中国调味品,2019,44(3):198-200.ZENG Xi,ZENG Simin,LONG Weizhen.Research progress of application of food sensory evaluation technology[J].China Condiment,2019,44(3):198-200.

[27]SHORT E C,KINCHLA A J,NOLDEN A A.Plant-based cheeses:A systematic review of sensory evaluation studies and strategies to increase consumer acceptance[J].Foods,2021,10(4):725.

[28]AMYOTTE B,BOWEN A J,BANKS T,RAJCAN I,SOMERS D J.Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study[J].PLoS One,2017,12(2):e0171710.

[29]KARAGIANNIS E,SARROU E,MICHAILIDIS M,TANOU G,GANOPOULOS I,BAZAKOS C,KAZANTZIS K,MARTENS S,XANTHOPOULOU A,MOLASSIOTIS A.Fruit quality trait discovery and metabolic profiling in sweet cherry genebank collection in Greece[J].Food Chemistry,2021,342:128315.

[30]LIAO G L,HE Y Q,LI X S,ZHONG M,HUANG C H,YI S Y,LIU Q,XU X B.Effects of bagging on fruit flavor quality and related gene expression of AsA synthesis in Actinidia eriantha[J].Scientia Horticulturae,2019,256:108511.

[31]陈屏昭,杜红波,秦燕芬,杨宏贵,李成树,莫立芳.果蔬品含酸量测定方法的改进及其应用[J].浙江农业科学,2013(4):451-453.CHEN Pingzhao,DU Hongbo,QIN Yanfen,YANG Honggui,LI Chengshu,MO Lifang.Improvement and application of determination method of acid content in fruit and vegetable[J].Journal of Zhejiang Agricultural Sciences,2013(4):451-453.

[32]WANG L B,LUO W Q,SUN X X,QIAN C L.Changes in flavor-relevant compounds during vine ripening of tomato fruit and their relationship with ethylene production[J].Horticulture,Environment,and Biotechnology,2018,59(6):787-804.

[33]LIM S,LEE J G,LEE E J.Comparison of fruit quality and GCMS-based metabolite profiling of kiwifruit‘Jecy green’: Natural and exogenous ethylene-induced ripening[J].Food Chemistry,2017,234:81-92.

[34]刘婉君,张莹,张玉星,杜国强.18 个品种授粉‘鸭梨’果实品质和香气成分分析与评价[J/OL].食品科学,2021:1-16.https://kns.cnki.net/kcms/detail/11.2206.TS.20210406.1057.004.html.LIU Wanjun,ZHANG Ying,ZHANG Yuxing,DU Guoqiang.Analysis and evaluation of fruit quality and aroma components of‘Yali’pear (Pyrus bretschneideri Rehd.) pollinated by eighteen pollinizers[J/OL].Food Science,2021:1-16.https://kns.cnki.net/kcms/detail/11.2206.TS.20210406.1057.004.html.

[35]刘青,易淑瑶,廖光联,贾东峰,钟敏,黄春辉,曲雪艳,徐小彪.套袋对毛花猕猴桃果实外观和内在品质的影响[J].中国南方果树,2021,50(2):144-147.LIU Qing,YI Shuyao,LIAO Guanglian,JIA Dongfeng,ZHONG Min,HUANG Chunhui,QU Xueyan,XU Xiaobiao.Effect of bagging on fruit appearance and internal quality of Actinidia eriantha[J].South China Fruits,2021,50(2):144-147.

[36]QIAO L,CAO M H,ZHENG J,ZHAO Y H,ZHENG Z L.Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange[J].BMC Plant Biology,2017,17(1):186.

[37]董新海,张宝善,苏百兖.柿果单宁组成及其生物学特性的研究状况[J].中国林副特产,2008(1):91-93.DONG Xinhai,ZHANG Baoshan,SU Baiyan.Research briefing of composition of persimmon tannin and the biological properties[J].Forest By-Product and Speciality in China,2008(1):91-93.

[38]郭琳,于泽源,李兴国.几种小浆果挥发性成分研究概述[J].园艺学报,2008,35(4):611-617.GUO Lin,YU Zeyuan,LI Xingguo.The composition and affecting factors of volatile in small berry[J].Acta Horticulturae Sinica,2008,35(4):611-617.

[39]李晓颖,谭洪花,房经贵,韩键,宋长年.果树果实的风味物质及其研究[J].植物生理学报,2011,47(10):943-950.LI Xiaoying,TAN Honghua,FANG Jinggui,HAN Jian,SONG Changnian.Flavor compounds in fruits and research on them[J].Plant Physiology Journal,2011,47(10):943-950.

[40]吴继红,张美莉,陈芳,廖小军,胡小松.固相微萃取GC-MS法测定苹果不同品种中主要芳香成分的研究[J].分析测试学报,2005,24(4):101-104.WU Jihong,ZHANG Meili,CHEN Fang,LIAO Xiaojun,HU Xiaosong.Determination of representative aromatic components in different breeds of apple by GC- MS with solid phase microextraction[J].Journal of Instrumental Analysis,2005,24(4):101-104.

[41]阎振立,张全军,过国南,赵锁印,张顺妮,李玉萍.产地和砧木对华冠苹果芳香物质及风味的影响[J].果树学报,2007,24(3):263-267.YAN Zhenli,ZHANG Quanjun,GUO Guonan,ZHAO Suoyin,ZHANG Shunni,LI Yuping.Effects of producing area and rootstock on aromatic components and flavor of Huaguan apple[J].Journal of Fruit Science,2007,24(3):263-267.

[42]董婧,刘永胜,唐维.中华猕猴桃(Actinidia chinensis Planch.)果实香气成分及相关基因表达[J].应用与环境生物学报,2018,24(2):307-314.DONG Jing,LIU Yongsheng,TANG Wei.Volatile components and their corresponding synthetic gene expression profile in the fruits of Actinidia chinensis[J].Chinese Journal of Applied and Environmental Biology,2018,24(2):307-314.

[43]冀志蕊,董庆龙,谷彦冰,吴建圆,迟福梅,徐成楠,张俊祥,乔壮,周宗山.砀山酥梨TCP 基因家族全基因组鉴定与分析[J].基因组学与应用生物学,2017,36(2):766-773.JI Zhirui,DONG Qinglong,GU Yanbing,WU Jianyuan,CHI Fumei,XU Chengnan,ZHANG Junxiang,QIAO Zhuang,ZHOU Zongshan.Genome- wide identification and analysis of TCP gene family in pear (Pyrus bretschneideri Rehd.)[J].Genomics and Applied Biology,2017,36(2):766-773.

[44]MCMATH K L,PATERSON V J,YOUNG H,BALL R D.Factors affecting the sensory perception of sweetness and acidity in kiwifruit[J].Acta Horticulturae,1992,297:489-500.

[45]YOUNG H,PATERSON V J.The Effects of harvest maturity,ripeness and storage on kiwifruit aroma[J].Journal of the Science of Food and Agriculture,1985,36(5):352-358.

[46]YOUNG H,STEC M,PATERSON V J,MCMATH K,BALL R.Volatile compounds affecting kiwifruit flavor[J].Fruit Flavors,1995,596:59-67.

[47]D’ALESSIO P A,OSTAN R,BISSON J F,SCHULZKE J D,URSINI M V,BENE M C.Oral administration of d-Limonene controls inflammation in rat colitis and displays anti-inflammatory properties as diet supplementation in humans[J].Life Sciences,2013,92(24/26):1151-1156.

[48]HOFMANN T,SCHARBERT S,STARK T.Molecular and gustatory characterization of the impact taste compounds in black tea infusions[J].Developments in Food Science,2006,43:3-8.

[49]FULLER G H,STELTENKAMP R,TISSERAND G A.The gas chromatograph with human sensor: Perfumer model[J].Annals of the New York Academy of Sciences,2010,116:711-724.

[50]张燕红,尹军峰,刘政权,许勇泉.分子感官科学技术在茶叶风味上的应用研究进展[J].食品安全质量检测学报,2018,9(22):5922-5929.ZHANG Yanhong,YIN Junfeng, LIU Zhengquan, XU Yongquan.Research progress of application of molecular sensory science technology in tea flavor[J].Journal of Food Safety &Quality,2018,9(22):5922-5929.

[51]DENG L,JIANG C Z,MU W L,WANG Q G.Influence of 1-MCP treatments on eating quality and consumer preferences of‘Qinmei’kiwifruit during shelf life[J].Journal of Food Science and Technology,2015,52(1):335-342.

[52]ELORTONDO F J P,OJEDA M,ALBISU M,SALMERON J,ETAYO I,MOLINA M.Food quality certification:An approach for the development of accredited sensory evaluation methods[J].Food Quality and Preference,2007,18(2):425-439.

[53]PINTO F S T,FOGLIATTO F S,QANNARI E M.A method for panelists’consistency assessment in sensory evaluations based on the Cronbach’s alpha coefficient[J].Food Quality and Preference,2014,32:41-47.

[54]张杨,梁怡蕾,潘琦雯,张文.猕猴桃感官评定与质地剖面分析的相关性[J].食品工业科技,2018,39(16):243-247.ZHANG Yang,LIANG Yilei,PAN Qiwen,ZHANG Wen.Correlation between the sensory evaluation and texture profile analysis of kiwifruit[J].Science and Technology of Food Industry,2018,39(16):243-247.

[55]IOANNOU I,PERROT N,HOSSENLOPP J,MAURIS G,TRYSTRAM G.The fuzzy set theory:A helpful tool for the estimation of sensory properties of crusting sausage appearance by a single expert[J].Food Quality and Preference,2002,13(7/8):589-595.

[56]VALLI E,BENDINI A,POPP M,BONGATZ A.Sensory analysis and consumer acceptance of 140 high-uality extra virgin olive oils[J].Journal of the Science of Food and Agriculture,2014,94(10):2124-2132.

Flavor quality analysis of five kiwifruit germplasm based on HS-SPMEGC-MS

LÜ Zhengxin1, 2, WANG Hailing1, HE Yanqun1, LIU Qing1, HUANG Chunhui1, JIA Dongfeng1, XU Xiaobiao1*

(1College of Agronomy/Kiwifruit Institute of Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China;2School of Agriculture and Biology,Shanghai Jiaotong University,Shanghai 200240,China)

Abstract:【Objective】Five accessions of kiwifruit were analyzed for their sugars and acids, composition of aroma substances and sensory characteristics.Interspecific differences in these components were identified with an aim to provide reference for kiwifruit flavor evaluation and crop improvement.【Methods】The volatile aroma compounds in kiwifruit of different cultivars/strains were determined using headspace solid phase micro-extraction (HS-SPME) and gas chromatography-mass spectrometry(GC-MS), and fruit flavor was evaluated with sensory evaluation method.【Results】Soluble solid content in the five kiwifruit cultivars/strains ranged from 13.53% to 19.23% at full commercial maturity.The highest was found in Ganhong-7, and the lowest in Mamao-13.Flesh firmness was in the range of 7.35-14.31 N, and the highest strain was Mamao-13, the lowest was Ganhong-7.Total soluble sugar content varied from 11.02%to 13.66%and was highest in Mamao-13,and lowest in Mamao-10.The titratable acid content was 1.15%- 1.51% and highest in Changchu-2 and lowest in Ganmi-6.Sugar to acid ratio was in the range of 8.50-11.35 and highest in Mamao-13 and lowest in Changchu-2.A total of 6 categories and 57 aroma compounds were detected in the 5 cultivars/strains,including 3 aldehydes,8 alcohols,1 alkanes,22 esters,13 terpenes,and 10 other aroma species.The dominant aldehydes were 2-hexenal with a relative content was 28.26%; the highest alcohols were 1-hexanol accounting for 12.77%; the highest esters were α-terpinolene, which was 54.10%; the highest content in terpenes was terpinolene,which accounted for 82.69%;p-xylene was the highest in other aroma species and accounted for 0.40%.The number of aroma substances detected in the five cultivars/strains was 19 in Changchu-2, 30 in Ganmi-6, 18 in Ganhong-7, 21 in Mamao-10 and 26 in Mamao-13.There were some low aroma compounds such as benzedrone (0.14%), urea, 2-propenyl- (0.18%), propyl isobutyrate (0.21%)and p-methylphenyl isopropyl alcohol (0.05%).The main aroma substances differed among cultivars/strains.The most abundant aroma substance in Changchu-2 was ethyl butyrate, with a content of 55.97%,followed by 2-hexenal,which was 28.62%.The highest aroma substance in Ganmi-6 was α-terpinolene,with a content of 54.10%,followed by 1-hexanol,which was 12.77%.The highest aroma substance in Ganhong-7 was ethyl butyrate,with a content of 48.59%,followed by methyl butyrate,which was 12.38%.The dominant aroma substance in Mamao-10 was terpinolene, with a content of 82.69%,followed by d-limonene,which was 4.58%.The highest aroma substance in Mamao-13 was ethyl butyrate,with a content of 43.78%,followed by d-limonene,which was 13.61%.2-hexenal,1-hexanol and pxylene were detected in all the 5 cultivars/strains kiwifruit.Hexanal, ethyl butyrate and d-limonene were detected in four cultivars/strains.Some chemical compounds appeared only in specific cultivars/strains.For example,cyclopentane was only found in Mamao-10,butyl isobutyrate in Changchu-2,styrene in Ganhong-7 and formamide in Mamao-13.It could be found that esters were the main aroma substances in Changchu-2, Ganhong-7 and Mamao-13, while terpenes were the main aroma substances in Ganmi-6 and Mamao-10.Ethyl butyrate and methyl butyrate were the main fruity and sweet aroma.Both 2-hexenal and 1-hexanol showed obvious grass flavor.Terpinolene showed a strong lemon flavor;α-terpinene had a typically sweet citrus flavor;d-limonene had a sweet lemon flavor.In sensory evaluation, Mamao-13 had the highest firmness and acidity scores; Ganmi-6 had the highest aroma and overripe flavor;Changchu-2 had the highest water content and sweetness;and Ganhong-7 had the highest kiwifruit flavor.The highest comprehensive score of sensory evaluation was 46.37 found in Ganmi-6,followed by Mamao-13 with 46.19.The cultivars/strains with the highest comprehensive score of sensory evaluation were Changchu-2.【Conclusion】The flavor quality of kiwifruit at soft ripening stage was evaluated based on sugar acid content, sugar acid ratio, aroma substances and sensory evaluation, and the differences in flavor and quality among different kiwifruit cultivars were clarified.

Key words:Kiwifruit;HS-SPME-GC-MS;Flavour;Aroma components;Sensory evaluation

中图分类号:S663.4

文献标志码:A

文章编号:1009-9980(2022)01-0047-13

DOI:10.13925/j.cnki.gsxb.20210388

收稿日期:2021-08-16

接受日期:2021-10-19

基金项目:江西省科技厅重点研发计划(20192ACB60002)

作者简介:吕正鑫,男,硕士,研究方向:果树种质资源与生物技术。Tel:19970040431,E-mail:13022213795@163.com

*通信作者Author for correspondence.Tel:13767008891,E-mail:xbxu@jxau.edu.cn