树形对桃树生长、产量和品质的影响

刘 丽,李秋利a,高登涛*,魏志峰,石彩云,王志强,刘军伟

(中国农业科学院郑州果树研究所,郑州 450009)

摘 要:【目的】探讨中油20号桃不同树形对树体生长、产量和品质的影响。【方法】研究3年生中油20号桃Y字形、主干形、三主枝开心形、四主枝开心形及V字形5种树形的夏季结果枝部位光照度,成熟果实品质及冬季树体结构。【结果】同一树形不同部位的光照度和果实品质均有显著性差异,均为上层>中层>下层,不同树形相同部位间差异不显著。每666.7 m2产量为主干形>V字形>Y字形>三主枝>四主枝。树体的主枝数越多,主干直径越粗,树体越高,冠径越大。总枝量主干形最少,四主枝最多,而每666.7 m2枝量V字形最多,主干形其次。不同树形枝类组成,长枝比例顺序为主干形>V字形>Y字形>三主枝>四主枝,中短枝比例与长枝比例相反。选择了13种指标进行主成分分析,5种树形的优劣顺序依次为V字形、四主枝开心形、三主枝开心形、Y字形、主干形。【结论】V字形树形综合评分最高,产量和每666.7 m2枝量较高、品质表现较好,是适宜标准化栽培的优良树形。

关键词:桃;中油20号;不同树形;树体结构;果实品质;主成分分析

桃原产我国,其产业虽然近些年有了很大发展,但如何提高产量、果实品质仍是果树生理生态学研究的重点。冠层结构是果树光合作用的主要部分,树冠的类型、大小、高度等直接影响树体对光的截获与利用及水肥的吸收、运输与利用,进而影响树木的生长、逆境适应能力、果实产量和品质的形成[1-2]。果树树形决定了树冠的冠层结构特点和树冠微域环境,直接影响树冠各部位的光照分布[3-4]、光合生产力及枝叶器官等的生理状态,是影响果实的产量和品质形成、栽培管理措施确定的基础[5-6]

树形影响着桃果实产量和品质,那么,桃的理想树形应该是什么?谭彬等[6]认为桃理想树形应有利于光能利用、有利于较高产量和优良品质形成、有利于机械化操作或省工栽培、抗逆性强。牛茹萱等[7]研究了适宜西北高旱桃区栽培的树形是Y字形。石佩等[8]调查了主干形桃树的冠层分布与果实品质的关系,指出光截获效率(STAR)越大的区域内越有较好的果实品质。周鹏等[9]指出中华寿桃中庸树中短枝比例和产量高于旺长树。中油20 号桃是中国农业科学院郑州果树研究所新育成的白肉油桃新品种,该品种树体生长势中等,果实7 月中旬成熟,在河南及周边省份有一定栽培面积[10]。为了更好地发挥该新品种的生产潜力,笔者在本研究中对Y字形、主干形、三主枝开心形、四主枝开心形及V字形5种树形对其树体生长、产量和品质的影响进行了研究,以期为生产提供理论依据和技术支持。

1 材料和方法

1.1 材料

试验于2020年3月至2021年1月在河南省原阳市桥北乡盐店庄村万亩桃园基地进行,供试品种为中油20 号,树龄3 a,果园供试面积0.6 hm2,南北行向,生长结果正常,全园统一正常土肥水管理。

1.2 试验设计

选择Y 字形、主干形、三主枝开心形(以下简称三主枝)、四主枝开心形及V字形5种树形进行研究,单株小区,每种树形(以下简称四主枝)设置3次重复。选择长势基本一致的树体作为试材,于夏季叶幕形成期进行光照度的调查,果实成熟期进行果实品质的调查,冬季果树生理落叶后至冬剪前进行树体结构调查。于叶幕形成期中期(7 月),选择典型晴天,用TSE-1332 型数字式照度计,测定树冠内同一方向距离树干0.5 m处的不同垂直部位(距地面0.5、1.0、1.5、2.0、2.5 m)的光照度。将不同树形桃树按垂直方向分为下层(距地面<0.8 m)、中下层(距地面0.8~1.6 m)、中上层(距地面1.6~2.4 m)和上层(距地面>2.4 m)4个部分,在桃果实成熟时(7月15日),从各个处理每株树的4 层各随机均匀摘选果形端正、无病虫害的10 个果实,做好标记带回实验室,测定其单果质量、果实硬度、可溶性固形物含量、可滴定酸含量、纵横径及果实色泽等果实品质指标,并调查果实株产量和每666.7 m2产量。于2020年冬季果树生理落叶后至冬剪前(12月上旬)进行枝量统计,调查各树形整株桃树的干高、干径、树高、南北冠幅、东西冠幅、主枝数、主枝粗、枝类(长枝、中枝、短枝)的数量并计算其比例,并统计每株的总枝量和每666.7 m2枝量。所有树形树体结构的指标数值均为3株试验树的平均值。

1.3 测定项目及方法

1.3.1 光照度 于叶幕形成期中期(7 月),选择典型晴天,用TSE-1332 型数字式照度计,测定树冠内不同层次、方位的光照度,每10 d测量1次,共测量3次,每次测量时间为08:00、11:00、14:00、17:00,以每天4 次和3 d 的测量数据平均值为叶幕形成期不同层次的光照度值[11]

1.3.2 树体结构参数的调查指标 桃树枝类的划分:长枝,>30.0 cm;中枝,15.0~30.0 cm;短枝,<15.0 cm。干高:桃树主干高度,用卷尺测量从地表到主枝基部的距离。干径:树干距地面10 cm处,用游标卡尺测量树干的粗度。树高:用标杆、卷尺测量从地表到树冠最高点的距离。冠幅:又称枝展,从东西和南北两个方向测量树冠的直径,以树冠东西、南北枝条伸展最远处计算。主枝数:主枝个数。主枝粗:主枝粗度,用游标卡尺测量主枝基部5 cm的粗度。

1.3.3 单果质量 单果质量采用电子天平(E5500S, Sartorius,德国)进行称重,记录结果保留两位小数,再求平均值,其质量用g表示。

1.3.4 果实纵、横、侧径及果形指数 果实纵、横、侧径采用精度为0.02 mm 游标卡尺(16FN,广州)进行测量,果形指数以果实纵径和横径的比值表示。

1.3.5 可溶性固形物、可滴定酸含量及固酸比 采用数显式糖度计(PAL-1,ATAGO,日本)测量可溶性固形物含量,每个果实在缝合线左右赤道部位对称测定2次,取其平均值,其含量用%表示;酸度用GMK-835F 酸度计测定,固酸比以可溶性固形物与可滴定酸含量的比值表示。

1.3.6 果实色泽 采用CR-400 手持色差计(Konica Minolta,日本)测定每个果实的色泽。果实色泽以L*a*b*三项指标表示,其中L*值表示颜色亮度,取值范围为[1,100],L*值越大,表示果面亮度越高;a*值代表红绿色差指标,取值范围[-60,+60],正值为红色,负值为绿色,绝对值越大,颜色越深;b*值代表黄蓝色差指标,取值范围[-60,+60],正值为黄色,负值为蓝色;绝对值越大,颜色越深。

利用a*值和b*值可以计算出色调角(hue angle,h*),h*=arctangent b*/a*h*为综合颜色指标,从0 至180依次表现为紫红、红、橙、黄、黄绿、绿、蓝绿[12]

1.3.7 果实硬度 果实硬度采用水果硬度计(浙江托普仪器有限公司,GY-4-J型)进行测定,硬度计探头的直径0.8 cm,每个果实测3次,取平均值。

1.4 数据处理

试验数据采用Excel 2010软件进行常规统计分析,用SPSS 18.0软件对数据进行单因素方差分析及主成分分析,多重比较采用LSD 法,使用SigmaPlot10.0软件进行绘图。

2 结果与分析

2.1 不同树形处理对中油20 号桃不同部位光照度的影响

通过比较主干形、V 字形、Y 字形、三主枝开心形和四主枝开心形5种不同树形树冠内光照度的差异(图1)得出,同一树形不同树冠部位结果枝处的光照度自上而下逐渐减弱,均为50 cm<100 cm<150 cm<200 cm<250 cm,且不同部位差异均显著(p <0.05)。主干形在不同部位的光照度均为最低,其次为Y 字形;在50 cm 部位,V 字形光照度值最高,其余部位均为四主枝>三主枝>V 字形>Y 字形>主干形。

图1 不同树形对中油20 号桃光照度的影响
Fig.1 Effects of different tree shapes on Illumination at different positions of Zhongyou 20 peach trees

不同小写字母代表同一树形不同部位间的差异显著(p <0.05),不同大写字母代表同一部位不同树形间的差异显著(p <0.05)。下同。
Different small letters stand for significant difference at p <0.05 level among different parts of the same tree shape.The different capital letters stand for significant difference at p <0.05 level among different tree shapes in the same part.The same below.

2.2 不同树形处理对中油20 号桃不同部位果实品质的影响

2.2.1 不同树形对中油20号桃单果质量、纵横径及果形指数的影响 比较了中油20 号桃品种不同树形树体各部位(上层、中上层、中下层、下层)果实大小和果形的差异,由图2 可知,5 种树形的平均单果质量无明显差异,但同一树形不同部位果实的单果质量差异较大,自上而下逐渐降低,不同树形的上层、中层和下层之间差异均显著(p<0.05),中上层和中下层差异不显著(p > 0.05)。图3 表明了不同树形相同部位的纵、横、侧径和果形指数均无明显差异,同一树形不同部位的纵、横、侧径均是自上而下逐渐降低,上层和下层差异显著,中上层和中下层无显著差异,但各个部位的果形指数均没有显著性差异。

图2 不同树形对中油20 号桃单果质量的影响
Fig.2 Effects of different tree shapes on fruit weight of Zhongyou 20 peach

图3 不同树形对中油20 号桃纵横侧径及果形指数的影响
Fig.3 Effects of different tree shapes on longitudinal,transverse,and lateral diameters and fruit shape index of Zhongyou 20 peach

2.2.2 不同树形对中油20号桃可溶性固形物、可滴定酸含量及固酸比的影响 由图4 可知,四主枝在中上层(1.6~2.4 m)、上层(>2.4 m)的可溶性固形物含量显著高于主干形,不同树形其他相同部位的可溶性固形物无显著差异;主干形在中下层(0.8~1.6 m)、中上层(1.6~2.4 m)、上层(>2.4 m)可滴定酸含量显著高于V 字形和Y 字形,与三主枝和四主枝无显著差异;V字形在中下层、中上层和上层固酸比显著高于主干形。同一树形不同部位的果实可溶性固形物含量和固酸比均为自上而下逐渐降低,上层和下层差异显著,中上层和中下层差异不显著。可滴定酸自上而下逐渐升高,但各个部位无显著差异。

图4 不同树形对中油20 号桃可溶性固形物、可滴定酸含量及固酸比的影响
Fig.4 Effects of different tree shapes on content of soluble solids and titratable acid of and soluble solid to acid ratio in Zhongyou 20 peach fruit

2.2.3 不同树形对中油20 号桃果面色泽参数的影响 在果实着色方面的结果见图5。5 种树形不同部位果实亮度(L*)、黄蓝色差指标(b)和综合颜色指标(h)均为自上而下逐渐增高,三主枝不同部位果实的L*、b*、h*差异不显著,其他4 种树形这3 个指标上层与下层差异均显著。5种树形红绿色差指标(a)中主干形上层与下层差异显著,其他树形不同部位均差异不显著。不同树形相同部位的L*、a*、b*、h*值均无显著差异。

图5 不同树形对中油20 号桃果面色泽参数的影响
Fig.5 Effects of different tree shapes on the skin color parameters of Zhongyou 20 peach fruit

2.2.4 不同树形对中油20 号桃果实硬度的影响果实硬度结果如图6 所示,同一树形不同部位自上而下逐渐升高,上层和下层差异显著,中上层和中下层差异不显著。主干形4个部位的果实硬度均显著高于四主枝,其他3种树形介于两者之间。

图6 不同树形对中油20 号桃果实硬度的影响
Fig.6 Effect of different tree shapes on firmness of Zhongyou 20 peach fruit

2.2.5 不同树形对中油20 号桃果面色泽的影响从图7 中可以看出,不同树形树体越往上果面颜色着色越好,上层>中上层>中下层>下层,V字形的外观颜色在中上层表现最为明显,主干形与Y 字形相近,三主枝与四主枝相近,V字形上层的果面光洁度高。

图7 果实成熟期不同树形不同部位果实
Fig.7 Photos of fruit from different parts of trees with different tree shapes at full maturity

2.3 中油20 号桃不同树形树体结构参数及果实产量的比较

比较了主干形、V字形、Y字形、四主枝、三主枝的3 年生树结构参数情况(表1)。表明主干枝数越多,干径就越粗。不同树形的树高和南北冠幅、东西冠幅与主枝数相关,三主枝和四主枝最高,V字形和Y 字形其次,主干形最低。树体的主枝粗度与主干枝数无关,四主枝的主枝粗度最低,三主枝的主枝粗度最高,V 字形和Y 字形居中。四主枝单株总枝量最大,三主枝其次,V 字形和Y 字形居中,主干形单株总枝量最小;V字形虽然密度比主干形小一半,但每666.7 m2总枝量达到最大,主干形其次,三主枝和四主枝因密度小,虽然单株总枝量高,但每666.7 m2枝量未达到最大值,Y 字形总枝量介于主干形和三主枝之间。在每666.7 m2产量方面,主干形>V字形>Y字形>三主枝>四主枝。

表1 不同树形三年生树结构参数比较
Table 1 Tree structure parameters of three-year-old trees in different tree shapes

树形Tree shape冠幅Crown width/cm 主干枝数Number of main branches/主干形Trunk V字形V-trellis Y字形Y-trellis三主枝Three main branches四主枝Four main branches株行距Row spacing m×m 1.2×3.0干高Trunk height/cm 48.2干径Trunk diameter/cm 77.7树高Height of tree/cm 282.7南-北South-north 219.3东-西East-west 262.0主枝粗Main branch diameter/cm—总枝量Total branches·per plants 258.8 666.7 m2枝量Shoots amount per 666.7 m2 47 878.0 666.7 m2产量Yield per 666.7m2/kg 2 266.1 2 081.7 2 032.1 1 645.3 1 575.5 1.5×4.5 25.8 99.5 362.7 296.2 369.5 65.8 494.5 48 461.0 1.5×4.5 55.6 86.8 369.7 273.0 355.1 57.1 453.7 44 462.6 2.0×4.5 36.3 110.9 364.3 310.0 393.8 71.3 517.1 38 265.4 2.0×4.5 36.2 127.9 345.4 345.8 408.6个1 2 2 3 4 54.4 522.2 38 642.8

2.4 中油20号桃不同树形树体枝类组成的比较

不同树形枝类组成结果如图8 所示。结果表明:骨干枝数目越多,长枝比例越低,中短枝比例越高。各个树形长枝与中短枝比例均在50%左右,长枝比例顺序为主干形>V字形>Y字形>三主枝>四主枝,中短枝比例与长枝比例相反。

图8 不同树形枝类比较
Fig.8 The category of branches in trees with different shapes

2.5 不同树形处理的综合评价

2.5.1 主成分分析 主成分分析是将多个指标通过线性组合转化为少数几个不相关综合指标的一种多元统计分析方法,简化后的指标要尽可能多地反映原来指标的主要信息而不丢失信息[13]。笔者在本研究中对5 个树形处理的13 个指标进行主成分分析,主成分分析的方差分解如表2和表3所示,提取了3个主成分Y1、Y2、Y3,其对应的方差贡献率分别为46.12%、30.47%和18.77%,以上3个主成分的累积贡献率达到了95.36%,基本包含了所测指标的全部信息。

表2 各因子载荷矩阵
Table 2 Loading matrix of each component

指标Indexes光照度Illumination单果质量Fruit weight可溶性固形物含量Soluble solid content固酸比Solid acid ratio纵径Longitudinal diameter横径Transverse diameter侧径Lateral diameter L*a*b*单株总枝量Total branches per plants 666.7 m2 枝量Shoots amount per 666.7 m2 666.7 m2 产量Yield per 666.7 m2主成分Principal components Y1 0.73-0.60 Y2 0.66 0.72 Y3-0.12 0.19 0.94 0.62 0.41 0.32 0.78-0.75 0.52 0.08 0.33 0.10 0.81 0.78-0.16 0.61 0.47 0.66 0.09 0.73-0.02-0.53-0.60 0.27 0.69-0.68 0.89 0.11 0.41-0.75-0.88 0.63 0.40 0.12 0.06

表3 主成分分析结果
Table 3 Results of principal components analysis

主成分Principal components Y1 Y2 Y3特征值Given value 6.00 3.96 2.44方差贡献率Contribution ratio/%46.12 30.47 18.77累计贡献率Cumulative contribution ratio/%46.12 76.59 95.36

2.5.2 综合评价 各个指标的原始数据标准化后,将各主成分相应的因子得分乘以相应方差的算术平方根,分别计算出不同树形桃树产量、品质和枝量的综合评价得分值;各得分值与相应特征值的方差贡献率的乘积累加得出不同树形的综合评价指数,以此评价不同树形的综合优劣[14]。如表4所示,综合桃树光照度、每666.7 m2枝量、产量和品质几个方面的因素得出,5种树形的优劣顺序依次为:V字形、四主枝开心形、三主枝开心形、Y字形、主干形。

表4 不同树形结构的综合评价指数值
Table 4 Comprehensive evaluation index value of different tree shapes

树形Tree shape综合得分Comprehen sive score排名Rank主干形Trunk V字形V-trellis Y字形Y-trellis三主枝Three main branches四主枝Four main branches主成分得分(Y1)Principal component score-3.65 0.44-0.72 0.92主成分得分(Y2)Principal component score-0.39 3.52-1.09-1.15主成分得分(Y3)Principal component score-1.51 0.31 2.09 0.70-2.19 1.40-0.28 0.22 3.01-0.89-1.59 0.86 5 1 4 3 2

3 讨 论

光照度是影响果树果实品质的一个较大的环境因子,笔者比较了5种不同树形树冠内光照度,表现为同一树形不同树冠部位结果枝处的光照度自上而下逐渐减弱,且不同部位差异均显著,不同树形相同部位的光照度与骨干枝数有关,骨干枝数越多,光照度值越大,但差异不明显。果实产量和品质是获得经济效益的关键因素,是果树栽植和整形的出发点和落脚点[15-17]。本研究的5 种树形相同部位的平均单果质量和纵、横、侧径以及果形指数均无明显差异,但同一树形不同部位果实的单果质量和纵、横、侧径差异较大,自上而下逐渐降低,与光照度呈正相关,上层显著高于下层,中上层和中下层无显著差异,说明光照度影响叶片的光合能力,同时影响光合产物向果实的运转分配,从而影响单果的体积和质量,这与何凤梨[11]在桃树上的研究结果相一致,也与生产中桃树喜光性强的现象相吻合。可溶性固形物和可滴定酸含量反映了果实的内在品质,二者适宜的含量可改善人们的口感,本研究中同一树形不同部位果实的可溶性固形物含量和固酸比表现一致,均为上层显著高于下层,中层果实间可溶性固形物含量无显著差异但均显著低于上层果实,下层果实均处于最低水平。果实色泽是外观品质的重要指标,在果实着色方面,5 种树形不同部位果实亮度(L*)、黄蓝色差指标(b*)和综合颜色指标(h*)的结果表明,三主枝不同部位果实的L*、b*、h*差异不显著,其他4 个树形这3 个指标均为上层显著低于下层;对于红绿色差指标(a*),主干形上层显著高于下层,其他树形不同部位均差异不显著。果实硬度方面,同一树形不同部位自上而下逐渐升高,上层显著低于下层,中上层和中下层差异不显著,不同树形相同部位果实硬度差异不显著。在亩产量方面,主干形>V 字形>Y 字形>三主枝>四主枝。综上分析表明,果实品质与光照度有关,光照度高,果实可以更好地受到太阳光的照射,一定程度上可以提高优质果率[18-20]。对果实综合品质而言,中、上层果实优于下层,不同树形同一部位的果实品质无明显差异,在保证果实品质相当的基础上,主干形和V 字形的产量更高。

树高、基径、骨干枝数和冠幅等冠层结构特征指标是影响桃树单株产量的重要因子,常用来评价桃树体的生长势和生产潜力[21-23]。本研究中3 年生中油20 号桃5 种树形间的冠幅,三主枝和四主枝开心形与V 和Y 字形明显大于主干形,V 字形和Y 字形基本保持一致,这主要与株间距的限制有关。树高与主枝数有关,主干形最少,V 和Y 其次,三主枝和四主枝最多。从单株枝量及干径来看,骨干枝数目越多,干周越粗,总枝量越大,中短枝比例越高。与单骨干的主干形和双骨干的V、Y字形相比,三主枝与四主枝树体树冠相对较大,其骨干枝多,树冠内通风透光性相对较好,生产潜力大。但V 字形的总枝量最大,达到每666.7 m2 48 461 条,主干形其次,每666.7 m2有47 878条,三主枝和四主枝因树冠大,栽植密度小,虽然单株总枝量高,但总枝量未达到最大值,三主枝和四主枝的的总枝量分别为每666.7 m2 38 265.4 条和38 642.8 条,总枝量明显偏低,Y 字形总枝量介于主干形和三主枝之间。桃树的枝类组成能够反映树体的生长势和结果能力,光照充足时,树体形成短枝较多,枝条健壮[24],本研究中的5种树形树体枝类组成相近,各树形树体的中短枝比例维持在50%左右,长枝比例顺序为主干形>V 字形>Y 字形>三主枝>四主枝,各树形树体树势中庸,表现良好,骨干枝数目越多,长枝比例越低,中短枝比例越高,主干形树体的短枝比例略低,长枝比例略高。综合来看,V 字形的亩总枝量最大,中短枝比例合适,有较大的生产潜力。

主成分分析[14]是通过降维将多个指标简化为少量综合指标,用少数变量反映多个初始变量信息的一种统计分析方法,目前已成为作物种质资源、抗逆性及果实品质综合评价[25-26]的主要方法之一。笔者在本研究中综合了桃树树冠内光照度、每666.7 m2枝量、产量和品质几个方面因素的13个指标进行主成分分析,提取了特征值大于1的3个主成分,反映初始变量的95.36%的信息,计算出反映不同树形的主成分得分及综合评价指数,对3 年生中油20 号桃的5种树形进行了综合评价。结果表明,5种树形的综合排名优劣顺序为V 字形、四主枝、三主枝、Y 字形、主干形。主成分分析结果与5 种树形的生长与生产性状及品质表现基本一致,表明主成分分析可以用来综合评价不同树形的优劣,提高了树形评价的准确性和方便性,为不同树形综合评价体系的构建奠定了基础。

4 结 论

主干形产量最高,每666.7 m2总枝量高,但光照度较低,果园较密闭,果实品质较低;三、四主枝开心形树高、冠幅大,果实品质较好,但低密度种植导致亩总枝量低,且每666.7 m2产量较低;Y字形在果实品质、每666.7 m2产量和每666.7 m2总枝量等指标中均处于中等水平,V字形果实品质较好、产量较高且每666.7 m2枝条量最高,综合评价最好,是比较适合推广的桃标准化栽培优良树形。

参考文献:

[1]KAITH N,SHARMA U,SHARMA D,MEHTA D.Effect of different pruning intensities on growth,yield and leaf nutrients status of starking delicious apple in hilly region of Himachal Pradesh[J].Journal of Farm Sciences,2011,1(1):37-42.

[2]刘丙花,唐贵敏,梁静,舒秀阁,李萍萍,赵登超,侯立群.不同树形对早实核桃‘鲁光’坚果产量和品质的影响[J].果树学报,2021,38(1):73-81.LIU Binghua,TANG Guimin,LIANG Jing,SHU Xiuge,LI Pingping,ZHAO Dengchao,HOU Liqun.Effects of different tree shapes on yield and quality of‘Luguang’walnut[J].Journal of Fruit Science,2021,38(1):73-81.

[3]黄国嫣,唐宗福,彭雅婷,王艳,李文祥.不同树形对‘丽江雪桃’光合作用强度及果实品质的影响[J].天津农业科学,2015,21(4):103-106.HUANG Guoyan,TANG Zongfu,PENG Yating,WANG Yan,LI Wenxiang.Effects of different tree shapes on photosynthesis and fruit quality of 'Lijiang Snow Peach'[J].Tianjin Agricultural Sciences,2015,21(4):103-106.

[4]李宏军,李俊才,蔡忠民,沙守峰,姜晓艳,王家珍.不同树形对‘南果梨’和‘苹果梨’树体光照和果实品质的影响[J].中国果树,2017(S1):33-35.LI Hongjun,LI Juncai,CAI Zhongmin,SHA Shoufeng,JIANG Xiaoyan,WANG Jiazhen.Effects of different tree types on light and quality of‘Nanguoli’pear and‘Pingguoli’pear[J].China Fruits,2017(S1):33-35.

[5]谭岷山,吴涛,肖良俊,张晓林,李贤忠.‘华宁大砂壳核桃’不同树形冠层特性与其产量的相关性研究[J].经济林研究,2020,38(1):162-168.TAN Minshan,WU Tao,XIAO Liangjun,ZHANG Xiaolin,LI Xianzhong.Correlation between canopy characteristics and yield of‘Huaning large sand shell walnut’with different tree shapes[J].Non-wood Forest Research,2020,38(1):162-168.

[6]谭彬,程钧,郑先波,王志强,冯建灿.桃树型及其调控关键基因研究进展[J].果树学报,2020,37(4):599-605.TAN Bin,CHENG Jun,ZHENG Xianbo,WANG Zhiqiang,FENG Jiancan.Progress on tree architecture and key genes of its regulation in peach[J].Journal of Fruit Science,2020,37(4):599-605.

[7]牛茹萱,赵秀梅,王晨冰,张帆,张雪冰,王发林.桃不同树形的冠层特征及对果实产量、品质的影响[J].果树学报,2019,36(12):1667-1674.NIU Ruxuan,ZHAO Xiumei,WANG Chenbing,ZHANG Fan,ZHANG Xuebing,WANG Falin.Effects of canopy characteristics on fruit yield and quality with different training systems in nectarines[J].Journal of Fruit Science,2019,36(12):1667-1674.

[8]石佩,刘航空,白红,郭东花,陶佳,范崇辉.主干形桃树冠层3D 模型构建及光截获与果实品质的空间分布研究[J].西北农业学报,2016,25(9):1371-1378.SHI Pei,LIU Hangkong,BAI Hong,GUO Donghua,TAO Jia,FAN Chonghui.Study on 3D truck model construction of peach tree canopies and light interception and space distribution of fruit quality[J].Acta Agriculturae Boreali-occidentalis Sinica,2016,25(9):1371-1378.

[9]周鹏,彭福田,彭勇,陈清,姜远茂.中华寿桃的树相指标研究[J].落叶果树,2006,38(5):4-5.ZHOU Peng,PENG Futian,PENG Yong,CHEN Qing,JIANG Yuanmao.StudyontreephaseindexofChineselongevitypeach[J].Deciduous Fruits,2006,38(5):4-5.

[10]鲁振华,牛良,崔国朝,潘磊,曾文芳,王志强.耐贮白肉油桃新品种‘中油20 号’的选育[J].果树学报,2020,37(11):1766-1768.LU Zhenhua,NIU Liang,CUI Guochao,PAN Lei,ZENG Wenfang,WANG Zhiqiang.A new white flesh and stony-hard nectarine cultivar‘Zhongyou 20’[J].Journal of Fruit Science,2020,37(11):1766-1768.

[11]何凤梨,王飞,魏钦平,王小伟,张强.桃树冠层相对光照分布与果实产量品质关系的研究[J].中国农业科学,2008,41(2):502-507.HE Fengli,WANG Fei,WEI Qinping,WANG Xiaowei,ZHANG Qiang.Relationship between distribution of relative light intensity in canopy and yield and quality of peach fruit[J].Scientia Agricultura Sinica,2008,41(2):502-507.

[12]李秋利,高登涛,魏志峰,王志强,司鹏,郭景南.茉莉酸酯类对春美桃果实品质及贮藏性的影响[J].河南农业科学,2015,44(12):93-98.LI Qiuli,GAO Dengtao,WEI Zhifeng,WANG Zhiqiang,SI Peng,GUO Jingnan.Effect of jasmonic acid esters on fruit quality and storage quality of Chunmei peach[J].Journal of Henan Agricultural Sciences,2015,44(12):93-98.

[13]朱迎春,安国林,李卫华,刘君璞,孙德玺.海藻酸水溶肥对西瓜生长及产量的影响[J].果树学报,2020,37(12):122-130.ZHU Yingchun,AN Guolin,LI Weihua,LIU Junpu,SUN Dexi.Effects of alginate water soluble fertilizer on growth and quality of watermelon[J].Journal of Fruit Science,2020,37(12):122-130.

[14]刘丙花,王开芳,王小芳,梁静,白瑞亮,谢小锋,孙蕾.基于主成分分析的蓝莓果实质地品质评价[J].核农学报,2019,33(5):927-935.LIU Binghua,WANG Kaifang,WANG Xiaofang,LIANG Jing,BAI Ruiliang,XIE Xiaofeng,SUN Lei.Evaluation of fruit texture quality of blueberry based on principal component analysis[J].Journal of Nuclear Agricultural Sciences,2019,33(5):927-935.

[15]HAMADZIRIPI E T,THERON K I,MULLER M,STEYN W J.Apple compositional and peel color differences resulting from canopy microclimate affect consumer preference for eating quality and appearance[J].HortScience,2014,49(3):384-392.

[16]李民吉,张强,李兴亮,周贝贝,杨雨璋,周佳,张军科,魏钦平.SH6 矮化中间砧‘富士’苹果不同树形对树体生长和果实产量、品质的影响[J].中国农业科学,2017,50(19):3789-3796.LI Minji,ZHANG Qiang,LI Xingliang,ZHOU Beibei,YANG Yuzhang,ZHOU Jia,ZHANG Junke,WEI Qinping.Effect of three different tree shapes on growth, yield and fruit quality of‘Fuji’apple trees on dwarfing interstocks[J].Scientia Agricultura Sinica,2017,50(19):3789-3796.

[17]魏钦平,鲁韧强,张显川,王小伟,高照全,刘军.富士苹果高干开心形光照分布与产量品质的关系研究[J].园艺学报,2004,31(3):291-296.WEI Qinping,LU Renqiang,ZHANG Xianchuan,WANG Xiaowei,GAO Zhaoquan,LIU Jun.Relationships between distribution of relative light intensity and yield and quality in different tree canopy shapes for‘Fuji’apple[J].Acta Horticulturae Sinica,2004,31(3):291-296.

[18]龚鹏,杨波,辛玉宝,张平,张强,李金明,杨伟.扁桃不同树形光合特性及产量的比较研究[J].新疆农业科学,2008,45(3):479-483.GONG Peng,YANG Bo,XIN Yubo,ZHANG Ping,ZHANG Qiang,LI Jinming,YANG Wei.Comparative research on photosynthetic, characteristics and yield of different tree figures of almond[J].Xinjiang Agricultural Sciences,2008,45(3):479-483.

[19]王秋晓,韩明玉,赵彩平,张芳芳,王安柱.桃不同树形光合特性的研究[J].西北农林科技大学学报(自然科学版),2009,37(4):145-150.WANG Qiuxiao,HAN Mingyu,ZHAO Caiping,ZHANG Fangfang,WANG Anzhu.Photosynthetic characteristics of different peach tree shapes[J].Journal of Northwest A & F University(Natural Science Edition),2009,37(4):145-150.

[20]张雯,周皓,刘翠荣,周玉梅,谢辉.不同树形对扁桃与冬小麦间作区域光环境的影响[J].新疆农业科学,2020,57(9):1639-1649.ZHANG Wen,ZHOU Hao,LIU Cuirong,ZHOU Yumei,XIE Hui.Effects of different tree shapes on regional light environment in almond-winter wheat intercropping areas[J].Xinjiang Agricultural Sciences,2020,57(9):1639-1649.

[21]肖龙,陈海江,邸葆,张海旺.两种桃树树形冠层参数变化及对产量和品质的影响[J].北方园艺,2012(17):20-23.XIAO Long,CHEN Haijiang,DI Bao,ZHANG Haiwang.The changes in canopy parameters and the effect of yield and quality by two kinds of peach tree shape[J].Northern Horticulture,2012(17):20-23.

[22]郑先波,李明,谭彬,叶霞,李继东,冯建灿.不同生长型桃的叶脉结构与树体结构的差异与关系[J].华北农学报,2017,32(4):195-200.ZHENG Xianbo,LI Ming,TAN Bin,YE Xia,LI Jidong,FENG Jiancan.Relation between leaf vein structure of different growth habits of peach and its tree structure[J].Acta Agriculturae Boreali-Sinica,2017,32(4):195-200.

[23]GULLO G,MOTISI A,ZAPPIA R,DATTOLA A,DIAMANTI J,MEZZETTI B.Rootstock and fruit canopy position affect peach [Prunus persica (L.)Batsch](cv.Rich May) plant productivity and fruit sensorial and nutritional quality[J].Food Chemistry,2014,153:234-242.

[24]王安柱,张芳芳,韩明玉,田海成,田玉命,赵彩平.主干形桃树对光截获能力和果实产量品质的影响[J].果树学报,2009,26(1):86-89.WANG Anzhu,ZHANG Fangfang,HAN Mingyu,TIAN Haicheng,TIAN Yuming,ZHAO Caiping.Effects of the central leader tree form on the light interception ability fruit yield and quality of peach[J].Journal of Fruit Science,2009,26(1):86-89.

[25]赵明新,张江红,孙文泰,曹刚,王玮,曹素芳,李红旭.不同树形冠层结构对‘早酥’梨产量和品质的影响[J].果树学报,2016,33(9):1076-1083.ZHAO Mingxin,ZHANG Jianghong,SUN Wentai,CAO Gang,WANG Wei,CAO Sufang,LI Hongxu.Effects of different tree training systems and canopy structures on yield and fruit quality of‘Zaosu’pear[J].Journal of Fruit Science,2016,33(9):1076-1083.

[26]陈双建,赵雪辉,成继东,李智,安栋.桃树树形研究进展[J].落叶果树,2019,51(1):34-36.CHEN Shuangjian,ZHAO Xuehui,CHENG Jidong,LI Zhi,AN Dong.Advances in studies on the shape of peach trees[J].Deciduous Fruits,2019,51(1):34-36.

Effects of tree shapes on growth,yield and quality of peach

LIU Li,LI Qiulia,GAO Dengtao*,WEI Zhifeng,SHI Caiyun,WANG Zhiqiang,LIU Junwei
(Zhengzhou Fruit Research Institute,the Chinese Academy of Agricultural Sciences,Zhengzhou 450009,Henan,China)

Abstract:【Objective】Although peach industry in China has made great progress,yield and fruit quality improvement remains the focus of fruit research.In order to fully realize the production potential of new varieties, we examined the effects of tree shape on fruit yield and quality of Zhongyou 20 peach,hoping to select the most suitable tree shape for peach production.【Methods】The experiment was carried out in a peach orchard in Yandianzhuang village, Qiaobei Township,Yuanyang City, Henan Province.The trees were 3-year-old,and the experimental plots covered an area of 0.6 hectares.It was planted in north-south rows.The whole orchard was under unified routine soil, fertilizer and water management.Five tree shapes, including Y-shape (Y), trunk shape (Trunk), three main branch open center shape,four main branch open center shape and V-shape (V) were selected for the study.Light intensity was investigated during the canopy formation period in summer; fruit quality was investigated during fruit ripening period, and tree structure was investigated before winter pruning after defoliation.In the middle stage of canopy formation(July),light intensity at different heights (0.5 m, 1.0 m, 1.5 m, 2.0 m and 2.5 m above the ground) in the same direction of tree crown was measured at 8:00, 11:00, 14:00 and 17:00 with a TSE-1332 digital illuminance meter on sunny days for 3 times at 10-day intervals.The average valued of the results of the 4 time points within a day of the 3 measurements was taken as the light intensity value at different heights during the canopy formation period.The tree crowns with different shapes were divided into four parts:lower layer(<0.8 m above the ground),middle lower layer(0.8-1.6 m above the ground), middle upper layer (1.6-2.4 m above the ground) and upper layer (>2.4 m above the ground).Fruit quality indexes such as fruit weight,fruit hardness,soluble solid content,titrat-able acid content,vertical and horizontal diameters and fruit color were measured,and tree productivity and yield per 1/15 hectare were investigated.Fruit weight was obtained with an electronic balance.The vertical, horizontal and lateral diameters of the fruit were measured with a vernier caliper, and fruit shape index was calculated.In the winter of 2020(early December),the number of branches was recorded.Trunk height and diameter,tree height,north-south crown width,east-west crown width,number of main branches, main branch diameter, number of different types of branches of the whole peach tree were investigated, and the proportions of branch types was calculated.The branch types included long branches, which were above 30.0 cm in length, middle branches, which were 15.0-30.0 cm in length,and short branches,which were shorten than 15.0 cm.Stem height was the distance from the ground surface to the base of the main branch measured with a tape measure.Stem diameter was the diameter of the trunk 10 cm above the ground.Tree height was the distance from the ground surface to the highest point of the crown measured with a benchmark and tape ruler.Crown width, also known as branch spread, was the diameter of the crown in the east-west or north-south directions.The diameter of main branch was measured at 5 cm from the base of main branch with a vernier caliper.【Results】The results showed that there were significant differences in light intensity and fruit quality among different parts of the same tree, which followed a pattern of upper > middle > lower, and there was no significant difference at the same position in different trees.The unit area yield in different tree shapes followed a pattern of Trunk>V>Y>three main branch open center>four main branch open center.The more main branches, the thicker the trunk diameter, the higher the tree height, and the larger the crown width.The total number of trunk shape per plant was the least,and the four main branches are the most,but the Vshaped branches per 666.7 m2 was the most,followed by the trunk shape.Although the total number of branches per plant was high, the number of branches per unit area was not.The branch number in Yshaped tree was between the main branch and the three main branches.The proportion of long branches was in the order of Trunk>V>Y>three main branch open center>four main branch open center,and the proportion of medium and short branches showed an opposite pattern to that of the long branches.13 indexes were selected for principal component analysis.The results showed that the score order of the five tree shapes was V>four main branch open center shape>three main branch open center shape>Y and trunk shape.【Conclusion】The V-shaped trees have the highest comprehensive score,with higher tree yield and branches per unit area and better quality performance, and is thus suitable for standardized cultivation.

Key words: Peach;Zhongyou 20;Different tree shapes;Tree structure;Fruit quality;Principal component analysis

中图分类号:S662.1

文献标志码:A

文章编号:1009-9980(2022)01-0036-11

DOI:10.13925/j.cnki.gsxb.20210225

收稿日期:2021-05-21

接受日期:2021-09-29

基金项目:中国农业科学院科技创新工程(CAAS-ASTIP-2020-ZFRI);河南省重大公益科技专项(201300110500)

作者简介:刘丽,女,助理研究员,主要从事果树栽培生理研究。Tel:0371-65330959;E-mail:liuli03@caas.cn。a为共同第一作者。

*通信作者Author for correspondence.Tel:0371-65330959,E-mail:gaodengtao@caas.cn