板栗 PAT 基因家族成员鉴定及不同胁迫响应分析

李金梅, 聂兴华, 葛静怡, 褚世慧, 刘阳, 秦岭, 邢宇* (北京农学院植物科学技术学院, 北京 102206)

摘要:【目的】鉴定和分析板栗 PAT 基因家族及其对不同胁迫的响应,探究板栗 PAT 基因家族的抗逆功能。【方法】在板栗全基因组水平上进行搜索和鉴定板栗 PAT 基因家族成员,利用生物信息学方法研究其系统发育进化树、基因结构和 motif、蛋白理化性质、染色体定位和共线性、启动子顺式元件等。以燕山红栗为试验材料,分析盐胁迫、抗病胁迫和干旱胁迫处理对板栗 PAT 基因家族表达模式的影响。【结果】在板栗基因组中共鉴定出包含 DHHC 结构域的 21 个 PAT 基因家族成员,它们与 24 个 *AtPAT* 基因家族成员共聚集为六个亚组;大多数 CmPAT 家族成员为具有亲水性的碱性稳定蛋白;21 个 PAT 基因家族成员不均匀地分布在板栗的 9 条染色体上;在 *CmPATs* 基因启动子区域鉴定到多种非生物胁迫及激素响应元件;表达模式分析表明,多个 *CmPAT* 基因不同程度地参与抗病、干旱、盐胁迫响应。【结论】共鉴定了 21 个板栗PAT 基因家族成员,同时筛选到 *CmPAT24、CmPAT7、CmPAT14* 可能共同参与了盐胁迫和干旱胁迫的调控,*CmPAT7* 可能共同参与盐胁迫、干旱胁迫、抗病胁迫的调控。

关键词: 板栗; 棕榈酰基转移酶(PAT); 胁迫处理

中图分类号: S664.2 文献标志码: A 文章编号: 1009-9980(2024)05-0001-08

Identification of *PAT* gene family members and analysis of different stress response in Chinese chestnut

LI Jinmei, NIE Xinghua, GE Jingyi, CHU Shihui, LIU Yang, QIN Ling, XING Yu^{*} (College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China)

Abstract : **(** Objective **)** The reversibility of protein palmitoylation is a key mechanism for regulating cellular function. Palmitoyl transferase is an important part of this mechanism, which can connect palmitic acid to the cysteine residue of the target protein. Protein palmitoylation is a post-transcriptional modification that plays a critical role in protein transport and function. Palmitate transferase (PAT) catalyzes the occurrence of acylation. Acylated PAT proteins may be involved in a variety of stress responses in material transport and signal transduction. Palmitate transferase plays an important role in growth, development and response to harmful stresses in plants. However, understanding of *PAT* genes in chestnut is limited. Here, we performed a genome-wide identification of the PAT gene family in chestnut and subsequently analyzed how it responds to various stresses in Chinese chestnut. **(**Method **)** HMMER, NCBI-CDD and SMART searches were performed to identify *PAT* genes throughout the chestnut genome. The domain information of the candidate gene family members was obtained through preliminary screening,

收稿日期: 2023-12-13 接受日期: 2024-02-16

基金项目:国家自然科学基金项目(2023202087/001)

作者简介: 李金梅, 女, 硕士研究生, 研究方向为果树分子生物学。E-mail: vmz0411@163.com

^{*}通信作者 Author for correspondence. E-mail: xingyu@bua.edu.cn

and the protein sequences without the DHHC domain were eliminated. Ultimately, 21 members of the chestnut PAT gene family were identified. The bioinformatics methods were used to study the phylogenetic tree, gene structure and gene motif, protein physicochemical properties, subcellular and chromosomal localization, collinearity and promoter cis-elements of the PAT genes. To check the stress resistance function of PAT gene family, Yanshanhong was used as experimental material. For salt treatment, the seeding roots were submerged in a solution containing 200 mmol $\cdot L^{-1}$ NaCl and samples were collected on the 7th, 10th and 14th days. Drought treatment was also carried out. Samples were collected and tested at different water contents in fresh leaves, specifically at 0, 5, 30, and 50%. To treat disease resistance, Chestnut Blight Mycelia Blocks were cultured on PAD medium. After 3 days, the PAD agar blocks containing chestnut blight mycelia were placed on perforated branches. Samples were collected at 0 h, 12 h, 24 h and 3 days after inoculation. Fresh branches that were only treated by punching served as controls. All samples were then harvested, immediately frozen in liquid nitrogen, and stored at -80°C. The influence of salt, disease resistance and drought stress on the expression pattern of the PAT gene family was examined using real-time quantitative fluorescence analysis. [Result] Through a comprehensive genome search and identification, we acquired 21 members of the PAT gene family in the chestnut genome that possess the DHHC domain. In the phylogenetic evolutionary tree, they grouped into six branches with 24 members of the AtPAT gene family. By analyzing the physical and chemical properties of the protein, it was found that most members of the CmPAT family are hydrophilic, basic, stable proteins and that their sequence lengths vary significantly. Subcellular localization showed that CmPAT7 was localized in the chloroplast, CmPAT4 in the nucleus, CmPAT23 in the cytoplasm, and the remaining PAT proteins in the plasma membrane. Gene structure and motif visualization showed 10 conserved motifs, and 21 PAT family members all had the DHHC domain, which was the most conserved. Their gene lengths also varied widely, ranging from 3750 to 24,300 bp, and each family member contained 7.28 introns and 8.57 exons. Members of the PAT gene family were unevenly distributed across the nine chromosomes. The CmPAT gene family was more conserved in the process of species differentiation. There are many abiotic stress and hormone response elements in the promoter region of the CmPATs gene. These include basic cis-acting elements, light-response elements, hormone-response elements, and many stress-response elements, of which cis-acting and light response elements account for the largest proportion. An examination of the transcription factor prediction word cloud identified up to 39 transcription factors related to the control of 21 CmPATs gene. Of these, the Dof protein family was the most abundant at 22%, followed by the AP2/ERF protein family and the BBR-BPC protein family at 17% and 10%, respectively. These protein families may play a crucial role in regulating PAT genes in chestnut. Analysis of the expression pattern revealed that several CmPAT genes were involved to varying degrees in the involves in responses to disease resistance, drought and salt stress. [Conclusion] A total of 21 CmPATs gene families were identified. The study found that the

expression levels of CmPAT24, CmPAT7 and CmPAT14 were significantly increased in response to

salt and drought stresses, demonstrating their involvement in the regulation of these stressors. Notably, the *CmPAT7* gene showed significant upregulation under salt, drought and disease resistance stresses, indicating its role in regulating all three stress types.

Key words: Chinese chestnut; palmitate transferase (PAT); stress treatment

生物体正常行使功能必须依赖蛋白质等大分子物质发挥功能,经复杂翻译修饰作用 (post-translatioanal modification, PTM)的蛋白质可以发挥正常功能及蛋白相互之间的调节 作用[1]。蛋白质翻译修饰的类型众多[2],其中,脂链修饰根据连接脂肪酸链的类型不同,分 为豆蔻酰化(myristoylation)、酰基化(acylation)等类型^[3-5]。棕榈酰基转移酶(palmitate transferase, PAT)催化的酰基化是将棕榈酰基以硫脂键的方式转移到蛋白质的半胱氨酸残基 上,从而影响蛋白质生物合成过程[6-8]。催化这个反应的是一类活性中心含有 Asp-His-His-Cys (DHHC)基序的酶,因此它们又被称为 DHHC 家族^[9]。棕榈酰基转移酶最先被发现于酵母中 [10-11],并广泛存在于哺乳动物与植物中[12-13]。如在杨树的相关研究中[14],利用酰基-生物素 交换法和质谱法鉴定出的酰基化蛋白参与物质运输、信号转导和胁迫的响应。其中 DHHC 类棕榈酰基转移酶是目前研究最多的家族。前人研究表明,在许多高等植物基因组中均鉴定 出了数目不等的 PAT 家族成员,例如水稻(Oryza sativa)有 30 个,玉米(Zea Mays)有 40 个, 拟南芥(Arabidopsis Thaliana) 有 24 个等^[15-16]。人们对拟南芥中 PAT 家族成员研究最 为透彻,其中 AtPAT4^[17]、AtPAT10^[18]、AtPAT13 和 AtPAT14^[19-20]、AtPAT15^[21]、AtPAT21^[22]、 AtPAT24^[23]等在生长发育、衰老、非生物胁迫反应等过程中具有重要的作用。并且根据演化 关系将拟南芥中 24 个 PATs 聚为三个分支, PAT1~9 属于分支一, PAT11~16 属于分支二, PAT18~22 属于分支三,其余成员由于演化关系较远并未进行聚类分析^[24]。

板栗(*Castanea mollissima*)原产于我国,营养物质丰富,是中国重要的经济作物之一。 中国的板栗种植总面积约为186.6万hm²,年产量高达194.7万t,占世界板栗年总产量一半 以上,稳居世界首位^[25],板栗种植主要位于浅山地带,灌溉条件有限,往往靠自然降水补 充水分。同时,当栽植地区的土壤 pH 超过7.5,含水量低于田间最大持水量的26.6%时, 其生长阶段易受到多种环境胁迫的影响,包括盐胁迫、干旱胁迫等^[26]。板栗生产中也会遭 受多种病虫害侵袭,其中栗疫病最为严重^[27]。因此,提高板栗的抗逆性,对提高板栗生产 产业极为重要。

本研究通过比对 PAT 保守结构域序列,在板栗全基因组中鉴定出了 21 个 PAT 家族成员, 并分析其系统发育树、基因结构、理化性质、染色体定位和共线性分析、启动子顺式作用元 件等信息,同时分析板栗 PAT 家族在不同胁迫下的基因表达模式,为板栗 PAT 家族基因抗 逆功能的分析提供理论研究基础。 1 材料和方法

1.1 试验材料

本研究胁迫处理的试验材料为北京市怀柔区板栗试验站采集的燕山红栗,选取大小、重量一致的燕山红栗种子,种子放置温度为 24 ℃,湿度为 60%的恒温培养箱中催芽,催芽后利用 1/2 Hogland 营养液进行水培,置于人工气候室(条件设置为室温 23~25 ℃,光周期为 16 h 光照/8 h 黑暗)培养,获得具有根系的板栗实生苗,选取生长一致的幼苗进行后续实验。 1.2. 板栗 PAT 基因家族成员的鉴定及多序列比对和系统进化树构建

从板栗基因组网站(http://castaneadb.net/)下载板栗基因组数据,包括基因数据文件, 蛋白数据文件、GFF 注释文件等。利用 pfam(http://pfam.xfam.org/)查找 PAT 家族基因隐 马尔科夫模型(PF01529),并下载所需家族 hmm 数据信息。使用 HMMER3.0 搜索得到 24 个 PAT 蛋白序列,利用 NCBI(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)Conserved Domain Search 和 SMART 对初筛得到的候选基因家族成员进行结构域信息查对,对比别除 无 DHHC 结构域的蛋白序列,最终确定 21 个板栗 PAT 基因家族成员。将选取的 21 个板栗 PAT 蛋白序列和 24 个拟南芥 PAT 蛋白序列使用 ClustalW 进行多序列比对,通过软件 MEGA11.0^[28]中的最大似然法(maximum likelihood, ML)构建进化树,Bootstrap 检验设定 1000 次重复,其他参数设置为默认参数。使用在线网站 itol(https://itol.embl.de/)对系统发 育进化树进行美化。并根据与拟南芥的进化关系,对板栗进行命名,例如 Cm08G00098 命 名为 *CmPAT10*、Cm05G00499 命名为 *CmPAT14*、Cm01G01675 命名为 *CmPAT7*、Cm04G01227 命名为 *CmPAT5*、Cm05G00558 命名为 *CmPAT19*、Cm04G02086 命名为 *CmPAT17* 等,进化 关系较远或无进化关系的 Cm07G01540 命名为 *CmPAT40*、Cm05G01777 命名为 *CmPAT7*.7 1.3 板栗 PAT 基因结构与 Motif 可视化分析

利用 MEME(http://meme-suite.org/tools/meme)进行 CmPAT 保守结构域分析,使用 TBtools 中的 Gene Structure View 对基因结构和保守结构域进行可视化分析。

1.4 板栗 PAT 基因家族的蛋白质理化性质分析和亚细胞定位

利用 ExPASy(https://www.expasy.org/)对板栗 PAT 基因家族成员进行蛋白质理化性质 分析,预测 PATs 氨基酸数目、蛋白分子质量、等电点、亲水性平均系数、脂肪系数等,通过 WoLF PSORT (https://www.genscript.com/wolf-psort.html)预测 PAT 蛋白的亚细胞定位。 1.5 板栗 PAT 基因家族染色体定位与共线性分析

使用 MCScanX (The Multiple Collinearity Scan toolkit) 工具进行染色体定位分析并作可 视化处理^[29]。并对板栗与拟南芥 *PAT* 基因的复制事件进行共线性分析^[30],使用 TBtools 作可 视化图。

1.6 板栗 PAT 基因家族的启动子顺式作用元件分析

在 TBtools 软件中,提取 *PAT* 基因上游的启动子前 1.5kb 序列,顺式作用元件的预测利用 PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/)进行^[31],可视化结果使用 TBtools 绘图显示。

1.7 板栗 PAT 基因转录因子的预测

CmPATs 基因的转录因子由在线网站 http://plantregmap.gao-lab.org/预测得到^[32],其词云 由在线网站 https://www.genescloud.cn/制作而成。

1.8 不同的胁迫处理

选取生长状况一致的水培实生苗进行土培,对土培材料进行 200 mmol·L⁻¹ NaCl 的胁迫 处理,以不加 NaCl 的为对照,每个处理 3 盆(1 盆 1 株),并分别在 7、10 和 14 d 时采取 同样位置 0 和 200 mmol·L⁻¹ NaCl 处理的叶片。

在进行干旱处理时,选取长势一致的水培转土培的板栗实生苗 30 株,采摘新鲜叶片, 分别在新鲜叶片含水量为 0%、5%、30%和 50%时取样。

在进行抗病处理时,选取新鲜板栗树枝条,用打孔器打孔,深度以达到形成层未到木质 部为准,将培养3d的栗疫病菌丝块接种于枝条的打孔处。以只进行打孔处理的新鲜枝条为 对照。取样时间分别为接种后的0、12、24h和3d。

以上样品均用液氮进行速冻放置-80 ℃超低温冰箱保存待测,每个处理均为3次重复。 1.9 RNA 的提取、cDNA 的合成及实时荧光定量 PCR 分析

使用 E.Z.N.A. Plant RNA Kit (Omega) 试剂盒提取 RNA。cDNA 的合成使用 Reverse Transcriptase M-MLV (RNase H-) 试剂盒(TaKaRa, 大连)。选择 *Cmactin* 作为内参基因^[20], 利用 Primer 3.0 设计 21 个 *CmPAT* 基因的 qPCR 引物(表 1),并由生工生物工程股份有限 公司(上海)合成。使用 Super Real Pre MixPlus (SYBR Green)试剂盒(Takala,大连),在 CFX96 (BIO-RAD,USA)上进行反应,每个样品 3 次重复。qPCR 反应程序为:预变性 95 ℃ 2 min, 变性 95 ℃ 15 s,退火 58 ℃ 30 s,延伸 72 ℃ 30 s,共40 个循环。利用 2^{-△△Ct}法计算 *CmPATs* 相对表达。

表 1 qPCR 引物序列信息

基因ID	上游引物	下游引物
Gene ID	Upstream primer	Downstream primer
CmPAT3	TGATAGGCGGATTGGTTCTC	ATCTGATTCAGGTGGCTTCG
CmPAT4	ACAAGCGAATGATGGGAAAC	TTGCTCCCTAACAAATGATCG
CmPAT5	ATAACCGTGGGTGTGCTCTC	CTTTGCCCTGAAGTTGTTCC

Table 1 qPCR primer sequence information

CmPAT7	TCCAAATATGGGGAAAGCTG	TGCGCTTCACAATTATCTGC
CmPAT8	CCTTCAATTCCCTCGAACAA	CGAGGCGGTCGATATAACAT
CmPAT10	GATGGAAGTCAGCTGGGAAG	GCAGTTGTTCCTTGGGGATA
CmPAT11	ATGCTGGGGTTGTGGATTAC	GATTTGTTATGGCCCCACAC
CmPAT12	GAATTTGGAGGCTGGTGGTA	GTCCGTCAGAAGACCACGTT
CmPAT13	CCCCAAACTGGAGACCTGTA	TGTGCCTAAACCTGGTCCAT
CmPAT14	TTTTGGGACAGACCAACGA	TCCTGGGAATCAAAGTCAGG
CmPAT15	CTCTCCATCCCAGTCTCAGC	CCCAGCTGAGCTCTGTAACC
CmPAT16	AGACCCCGATAACCCAATTC	CACGGGGAGGCTTATACTGA
CmPAT17	ATGGCAGTGCAGTGGG	TCAGCCCAACTTTGATTTGG
CmPAT18	ATGGTGGGAATGGCAATTTA	TTGTGATTTCCGCAATTCTG
CmPAT19	GGGATCATTCTTCTCCGTCA	CCCCCAACTTCACCTACTGA
CmPAT21	TTTGTCCGATGCTTTGTTGA	TGCATAAGGCCACCACAATA
CmPAT22	GGATGGCAACTTCCTTACCA	CCCAACAAAAGGAGCAAAGA
CmPAT23	TTCATTATGTGGCGGTTCAA	CTGGGAAGCCTGTGAGGTAG
CmPAT24	TGGCAATGTTGATCACTGGT	AGCATGGTTGATCCACTTCC
CmPAT40	CTTCCCCACTTTTCATCCAA	GAAAACAAAAGCCGAAGCTG
CmPAT77	CTACAGCTGTTGGCCTCCTC	CCAAATCGGCAGATCTCATT

2 结果与分析

2.1 板栗 PAT 基因的系统进化树分析

利用 HMMER、NCBI-CDD 和 SMART 在板栗全基因组水平上进行搜索,并对获得的 *CmPAT* 基因进行 Blast,最终鉴定了 21 个 *CmPAT* 基因。为了解 CmPAT 蛋白的功能及进化 关系,将 21 个 CmPAT 蛋白序列与拟南芥 24 个 AtPAT 蛋白进行蛋白多序列比对,构建系统 发育进化树。根据拟南芥分组情况,将系统进化树分成六个亚组(I~VI)。在六个亚组中, V组和VI组为最小分组,仅有一个成员: Cm08G0098 和 Cm07G01540,最大分支组 I 组为 (*AtPATI~9*)和II组(*AtPATII~16*),均有 6 个成员。在多序列比对中,21 个 CmPAT 成员 均具有 DHHC 结构域(图 1)。

Fig. 1 Phylogenetic tree of chestnut PAT family members

2.2 CmPATs 的基因结构和 motif 可视化分析

为了深入研究 *CmPATs* 的结构异同,通过在线网站 MEME,在系统发育树的基础上预 测到了 PAT 序列中的 10 个保守基序和基因结构图。在 21 个 *PAT* 基因中,发现每个 *PAT* 基 因中包含不同种类和数目的 motifs。其中 Motif4 存在于 6 个 *CmPAT* 基因中(*CmPAT7、CmPAT3、 CmPAT4、CmPAT5、CmPAT77、CmPAT8*), motif5 存在 7 个 *CmPAT* 基因中(*CmPAT7、CmPAT3、 CmPAT4、CmPAT5、CmPAT77、CmPAT8、CmPAT17*)、motif7 和 motif10 共同存在 4 个 *CmPAT* 基因中(*CmPAT22、CmPAT21、CmPAT18、CmPAT19*),说明它们具有相似的功能,在进化 关系上也比较近。各个 *CmPAT* 的基因长度差异较大,范围在 3750~24 300 bp 间。所有的 *PAT* 基因都含有 Motif1,则 motif1 应为 DHHC 保守结构域。*CmPAT77* 不存在 UTR 区, *CmPAT40*、 *CmPAT15* 只有 1 个 UTR 区。其他基因都具有 2 个以上的 UTR 区(图 2)。

Fig. 2 Chestnut PAT gene structure and motif visualization

2.3 板栗 PAT 基因家族的蛋白理化性质分析和亚细胞定位

利用 pfam 数据库与板栗 V4 基因组进行比对分析,获得了板栗基因组中包含一个 DHHC 结构域的 21 个基因。随后对其蛋白序列进行蛋白质理化性质分析发现,序列长度差异较大,在 274~794 个氨基酸之间,氨基酸长度最长的是 *CmPAT77*,最短的是 *CmPAT15*。平均分子 质量为 51.27 kDa,等电点在 5.91~9.82 之间,其中只有 *CmPAT3、CmPAT14、CmPAT23、CmPAT24、CmPAT77* 这 5 个基因的 PI 小于 7,说明多数板栗 PAT 蛋白表现为碱性,少数为酸性。脂肪指数在 73.60~14.69 之间。蛋白的平均亲水性(GRAVY)在-0.279~0.419 之间,其中 GRAVY 为正值有 10 个 CmPAT 蛋白,负值的有 11 个 CmPAT 蛋白。通过蛋白疏、亲水性分析发现,仅有 *CmPAT12、CmPAT13、CmPAT16、CmPAT17、CmPAT40、CmPAT77* 这

6个 PAT 蛋白脂肪系数大于 100,为疏水性蛋白,其余均为亲水性蛋白;同时,有 12个 PAT 蛋白的不稳定系数小于 40,9个 PAT 蛋白不稳定系数大于 40,表明板栗 PAT 家族中大多为 稳定蛋白。其中 *CmPAT77* 除了上述 PAT 家族共有的 DHHC 保守结构域外还具有特异的泛素 蛋白激酶序列。通过 WoLF PSORT Prediction 进行亚细胞定位发现,*CmPAT7* 定位在叶绿体, *CmPAT4* 定位在细胞核, *CmPAT23* 定位在细胞质,剩余 18个 PAT 蛋白定位在质膜中(表 2)。

	表 2	CmPATs	蛋白理(と特性分	▶ 析和亚	细胞定位	Ì
--	-----	---------------	------	------	-------	------	---

Table 2 Physicochemical properties analysis and subcellular localization of CmPATs protein

蛋白名称	氨基酸数	分子质量		亲水性平	不稳定系数	脂肪指数	(+ 1+ 1-P	
Protein	Aminoaci-	Molecular	寺电只	均数	Instability	Aliphatic	结构域	业细胞定位
name	dsize	weight	pl	GRAVY	index	index	Domain	Subcellularlocation
CmPAT3	425	47 821.67	6.63	-0.205	35.98	78.14	DHHC	质膜 plasma membrane
CmPAT4	450	51 095.13	7.11	-0.279	37.59	73.60	DHHC	细胞核 Nucleus
CmPAT5	430	48 985.74	8.84	-0.104	44.86	79.51	DHHC	质膜 plasma membrane
CmPAT7	443	49 843.42	8.99	-0.118	36.29	79.37	DHHC	叶绿体 Chloroplast
CmPAT8	426	48 148.08	7.92	-0.144	41.83	86.92	DHHC	质膜 plasma membrane
CmPAT10	349	40 228.00	8.69	0.112	46.10	93.04	DHHC	质膜 plasma membrane
CmPAT11	338	38 600.26	8.87	0.270	41.78	91.15	DHHC	质膜 plasma membrane
CmPAT12	311	34 984.96	7.14	0.359	34.80	104.69	DHHC	质膜 plasma membrane
CmPAT13	356	40 254.22	8.53	0.340	31.97	102.64	DHHC	质膜 plasma membrane
CmPAT14	307	34 696.35	6.70	0.221	41.18	97.13	DHHC	质膜 plasma membrane
CmPAT15	274	31 047.34	8.75	0.340	41.36	95.29	DHHC	质膜 plasma membrane
CmPAT16	286	32 177.58	8.44	0.301	45.27	103.53	DHHC	质膜 plasma membrane
CmPAT17	392	44 253.72	8.91	0.334	34.41	100.97	DHHC	质膜 plasma membrane
CmPAT18	507	58 404.28	9.82	-0.206	39.20	85.33	DHHC	质膜 plasma membrane
CmPAT19	735	79 486.22	8.66	-0.186	53.02	75.09	DHHC	质膜 plasma membrane
CmPAT21	659	71 872.75	8.02	-0.09	56.44	84.01	DHHC	质膜 plasma membrane
CmPAT22	628	68 763.81	8.93	-0.129	34.41	84.20	DHHC	质膜 plasma membrane
G	546	60 336 61	6 59	-0.080	33 73	90.46	DHHC ANKYR	细胞质 Cytoplasm
CmPAT23	540	00 550.01	0.37	-0.000	55.25	20.40	Ank_2	лалалд Суюргазии
CmPAT24	641	70 202.33	6.36	-0.199	32.29	87.38	DHHC PHA03095 Ank_2	质膜 plasma membrane

CmPAT40	329	36 945.34	8.51	0.419	38.13	104.26	DHHC	质膜 plasma membrane
CmPAT77	794	88 528.14	5.91	0.066	35.85	102.70	DHHC E1_enzyme	质膜 plasma membrane

2.4 板栗 PAT 基因的染色体定位和共线性分析

绘制 CmPATs 基因在染色体上的分布图,并利用 1~12 号染色体表示基因在染色体上的 分布。21 个基因家族成员不均匀分布在 1 号、3 号、4 号、5 号、7 号、8 号、10 号、11 号 和 12 号染色体上, 2 号、6 号和 9 号染色体上没有 CmPAT 基因的分布。CmPAT24、CmPAT7、 CmPAT8、CmPAT21 分布于 1 号染色体上,CmPAT19 分布在 3 号染色体上,CmPAT17、CmPAT11、 CmPAT5 和 CmPAT22 分布在 4 号染色体上,CmPAT7、CmPAT15、CmPAT13、CmPAT14、 CmPAT12 分布于 5 号染色体,CmPAT40、CmPAT10、CmPAT23 分别分布在 7 号、8 号和 10 号染色体上,CmPAT3、CmPAT4 及 CmPAT16 分布在 11 号染色体,CmPAT18 分布在 12 号染 色体(图 3)。对板栗和拟南芥 PAT 基因进行共线性分析发现,在板栗与拟南芥之间存在了 10 个具有共线性关系的 PATs,在板栗间无共线性关系的 PATs。板栗和拟南芥的 PAT 数目相 差不大,因此 CmPAT 基因家族在物种间分化过程中比较保守(图 4)。

Figure.3 Chromosomal localization of CmPATs

图 4 板栗与拟南芥 PAT 基因的共线性比对

Fig. 4 The collinearity comparison of *PAT* genes between chestnut and Arabidopsis thaliana 2.5 *CmPATs* 基因启动子顺式作用元件分析

为探索 CmP4Ts 基因的功能,将 21 个板栗 P4T 基因上游 1.5 Kb 的启动子序列提交到 PlantCARE 网站进行顺式作用元件的预测。如图 5 所示,在板栗 P4T 基因的启动子区域中 预测到基本顺式作用元件、光响应元件,激素响应元件,多种逆境胁迫响应元件,植物生长 发育相关元件等,基本顺式作用元件数量最多,其中有 943 个 TATA-box、623 个 CAAT-box 和 152 个 AT~TATA-box 等启动子元件;其次为光响应元件,包括 42 个 Box4、24 个 G-box、 16 个 TCT-motif、13 个 GATA-motif、11 个 MRE、9 个 GT 1-motif 等;在植物激素响应元件 中,含有 45 个生长素响应元件 (ARE、TGA-element)、19 个赤霉素响应元件 (P-box、 TATC-box、GARE-motif、F-box)、24 个乙烯响应元件 ERE、60 个脱落酸响应元件 (ABRE、 AAGAA-motif、ABRE4、ABRE3a)、42 个水杨酸响应元件 (as-1、TCA、TCA-element)等; 在逆境胁迫响应元件中,含有 7 个干旱诱导元件 (MBS、MBSI)、12 个低温响应元件 LTR、 20 个损伤诱导元件 (WUN-motif、WRE3)、12 个抗病响应元件 W-box 等;植物生长发育相 关元件包括 12 个参与玉米醇溶蛋白代谢调节元件 O 2-site、4 个与植物胚乳发育相关元件 (GCN 4_motif、AACA_motif)、1 个参与种子特异调控元件 RY-element 等,此外还预测到 66 个 MYB 和 61 个 MYC 参与环境适应性的响应元件等。推测 CmP4Ts 基因在板栗生长发

图 5 CmPATs 基因启动子顺式作用元件可视化

Fig. 5 Visualization of cis-acting elements of CmPATs gene promoter

2.6 板栗 PAT 转录因子对应的词云分析

转录因子预测发现,与 21 个板栗 PAT 基因调控相关的转录因子多达 39 种,其中以 Dof 蛋白家族的数量最多,BBR-BPC、AP2/ERF、MYB 蛋白家族的数量在 300~400 之间,C2H2、GRAS、NAC、WRKY、TCP、HD-ZIP 蛋白家族的数量在 100~250 间,bHLH、TALE、bZIP、Trihelix、MYB_related、LBD、CPP、GATA、G2-like、MIKC_MADS、B3、WOX、HSF、C3H、ARF、ZF-HD、SBP 蛋白家族的数量在 20~85 之间。其中 Dof 占比 22%,AP2/ERF 占比 17%,BBR-BPC 占比 10%等。这些转录因子可能在板栗中 PAT 基因的转录过程中发挥 着重要的作用(图 6)。

图 6 CmPATs 转录因子的词云 Fig. 6 Word Cloud of CmPAT Transcription Factor

2.7 板栗 PAT 基因参与不同胁迫响应

为进一步了解板栗 PAT 基因在不同胁迫条件下的作用,对板栗实生苗进行不同浓度盐胁迫和干旱胁迫处理,进行板栗 PAT 基因表达量热图的绘制。

21 个 *CmPAT* 基因在不同时期不同程度的参与了盐胁迫响应。在 7 d 时,相对于对照, 有 2 个基因表达上调,5 个基因表达下调。在 10 d 时,有 11 个基因表达上调,其中有 6 个 基因表达明显上调,2 个基因明显下调。在 14 d 时,有 6 个基因表达上调,5 个基因表达下 调,其中 4 个基因明显表达下调。说明 *CmPAT* 基因广泛参与盐胁迫的响应。在干旱胁迫处 理中,含水量为 5%时,有 2 个基因表达明显上调,含水量为 30%时,有 7 个基因表达明显 上调,含水量为 50%时,仅有 1 个基因表达未上调,且无表达量下调的基因,说明 *CmPAT* 基因亦广泛参与干旱胁迫响应。*CmPAT24、CmPAT7、CmPAT14* 共同正向参与响应盐胁迫与 干旱胁迫(图 7-a、b)。

在植物生长的过程中,除了非生物胁迫以外,还面临着病原菌的侵染等生物胁迫,抗病

的作用机制也较为复杂。在 CmPAT 基因响应抗栗疫病的转录组数据发现,整体基因表达量数值较低。在栗疫病病菌侵染 12 h 时,与 12 h 对照相比,基因表达量明显上调的有 2 个,为 CmPAT11 和 CmPAT4,分别上调了 1.11 倍和 1.39 倍,仅有 CmPAT17 表达量明显下调,下调了 72.61%。在栗疫病病菌侵染 24 h 时,与 24 h 对照相比,有 6 个基因表达量明显上调,分别为 CmPAT24、CmPAT7、CmPAT16、CmPAT17、CmPAT14、CmPAT77,其基因表达量上调在 1.5 倍以上,其中 CmPAT14 和 CmPAT77 的基因表达量上调了分别为 2.79 倍和 2.49 倍; CmPAT21 和 CmPAT22 基因表达量下调较为明显,分别下调了 31%和 37%。在栗疫病病菌侵染 3 d 时,与 3 d 对照相比,亦有 6 个基因表达量明显上调,分别为 CmPAT7、CmPAT10、CmPAT16、CmPAT23、CmPAT17、CmPAT4,其基因表达量上调在 1.5 倍以上,其中 CmPAT7 和 CmPAT17 表达量上调分别为 2.61 倍和 2.44 倍;CmPAT21、CmPAT5、CmPAT77 基因表达量下调较为显著,分别为 42%、44%、57%。CmPAT7、CmPAT16和 CmPAT17 基因表达量在 24 h 和 3 d 两个时期里均明显上调,CmPAT21和 CmPAT7 均明显下调。说明它们可能参与了响应栗疫病胁迫的网络(图 7-c)。不同的 CmPAT 基因在不同胁迫中具有不同程度的响应,其中 CmPAT7 正向参与了盐胁迫、干旱胁迫和抗病胁迫的调控。

a. *CmPATs* 盐胁迫基因表达量, CK 表示为 0 mmol·L⁻¹ NaCl 处理, CT 表示为 200 mmol·L⁻¹ NaCl 处理; b. *CmPATs* 干旱胁迫基因表达量, 0%~50%表示为不同干旱处理程度; c. *CmPATs* 抗病胁迫基因表达量, 0 h 表示为只打孔处理, CK 表示为打孔+PAD 琼脂块处理, CT 表示为打孔+带有病菌的 PAD 琼脂块处理; h 和 d 表示为处理时间。

a. CmPATs salt stress gene expression, CK is expressed as 0 mmol·L⁻¹ NaCl treatment, CT is expressed as 200 mmol·L⁻¹ NaCl treatment;
b. *CmPATs* drought stress gene expression, 0 %-50 % is expressed as different degrees of drought treatment;
c. *CmPATs* disease resistance gene expression, 0 h is expressed as only punching treatment,
CK is expressed as punching + PAD agar block treatment, CT is expressed as punching + PAD agar block treatment, is expressed as treatment time.

图 7 不同胁迫下 CmPATs 基因表达模式 Fig. 7 Expression patterns of CmPATs genes under different stresses

3讨论

蛋白质棕榈酰化是一种后转录修饰的可逆反应,其棕榈酰基转移酶(palmitate transferase, PAT)催化酰基化的发生,发生酰基化的蛋白可以参与多种物质运输、信号转导胁迫响应。因此 PAT 家族作为参与调控植物生长发育与逆境胁迫的相关蛋白逐渐进入大家的视野。

在本研究中,共鉴定出板栗中 21 个 PAT 家族成员,其基因数目与拟南芥基因数目接近, 但不同物种间的 PAT 基因家族成员数目差异说明该基因家族在植物进化过程中产生一定程 度的分化和扩增^[33]。将鉴定出的 CmPAT 家族成员通过系统发育进化树、基因结构和 motif、 蛋白质理化性质、染色体定位、基因复制事件、共线性和不同胁迫下表达模式等生物信息学 方法进行综合分析。

在系统发育进化树中发现 21 个 CmPAT 蛋白中有 17 个与拟南芥成员存在同源关系,在 同一个亚组中的成员含有一致或相似的蛋白保守基序分布,支持了进化分析的结果,同时也 表明在氨基酸水平上存在同源关系的 CmPAT 和 AtPAT 间可能具有相似的生物学功能。例如 Zhou 等^[18]对在液泡定位的 AtPAT10 的功能进行报道, AtPAT10 对拟南芥的发育及耐盐性至 关重要,则 CmPAT10 可能也具有耐盐性等。通过分析板栗 PAT 基因上游启动子中顺式作用 元件的组成情况发现,其上游存在大量生长发育和各种胁迫应答相关的顺式作用元件,它们 在转录过程中可能受到多种转录因子的调控,以此提高板栗在生长发育过程中的抗逆性。这 与其他物种通过对启动子进行分析来研究 PAT 家族成员对不同非生物胁迫等的响应机制结 果一致^[34-36]。

板栗在生长过程中,易受到盐害和干旱等非生物胁迫。张新业等[37]对鉴定的27个胡萝 ト PAT 基因进行盐胁迫处理,发现有3个 DsPATs 响应了盐胁迫。本研究中盐胁迫处理下发 现 CmPAT24、CmPAT7、CmPAT13、CmPAT14 在 10 d 和 14 d 表达上调显著。笔者推测这些 基因在不同时期可能参与板栗对盐胁迫的响应,这与前人研究结果相似。Tian 等[33]发现 OsPAT30参与了水稻耐盐性的调控。Qi等^[38]研究表明,拟南芥中的一个棕榈酰基转移酶, AtPAT10 对盐胁迫响应极为敏感。姜翰^[39]在对苹果 PAT16 的功能进行研究时得到 MdPAT16 能抵抗盐胁迫促进苹果糖分的积累。但在拟南芥和苹果中响应盐胁迫的 PAT10 和 PAT16 在 板栗实生苗中并没有明显的响应。这与前人研究结果不一致,同时 Tian 等[33]的结果也表明 了 PAT 基因功能在不同物种中对盐胁迫具有一定的保守性。此外,吕慧等^[40]发现干辣椒果 实辣椒素在干旱和盐胁迫的共同刺激下,促进了10个基因的表达。本研究中, CmPAT24、 CmPAT7、CmPAT14 亦共同正向响应了盐胁迫和干旱胁迫,这与吕慧等[40]的研究结果一致, 在盐胁迫和干旱胁迫双重胁迫下促进多个基因的表达。ZmPAT24(ZmTIP1)能够调节玉米 根毛的长度及参与干旱胁迫的调控^[41]。本研究中3d时大部分 CmPAT 基因的表达量均上调, 仅有 CmPAT21 未表现出明显的抗旱性。这与前人研究结果相似,不同之处在于大部分 CmPATs 基因均参与调控板栗响应干旱胁迫。据报道, Deng 等[36]发现部分 GhPATs 基因在病 原菌、干旱、盐等非生物胁迫下参与响应,并验证了 GhPAT27 参与陆地棉花黄萎病抗性响

应。Gao 等^[42]发现 *AtPAT13* 和 *AtPAT16* 通过棕榈酰化修饰 NB-LRR 蛋白 R5L1 调控拟南芥的 抗病机制。本研究中,根据抗病胁迫转录组测序的结果发现,*CmPAT7、CmPAT16* 和 *CmPAT17* 基因表达量在 24 h 和 3 d 两个时期里均明显上调,*CmPAT21* 和 *CmPAT77* 均明显下调。说明 它们可能参与了响应栗疫病胁迫的网络。推测这 5 个基因极有可能参与板栗抗栗疫病的响应,并在板栗抗栗疫病中特异表达。并且 *CmPAT24、CmPAT7、CmPAT14* 共同响应盐胁迫和干旱 胁迫的调控,*CmPAT7* 共同响应盐胁迫、干旱胁迫和抗病胁迫的调控,部分 *CmPATs* 基因共 同参与各种胁迫与前人的研究结果一致。

4 结 论

本研究中共鉴定出 21 个板栗 PAT 基因家族成员,它们在盐胁迫、干旱胁迫和抗病胁迫 等生物和非生物胁迫中发挥着重要作用。其中 CmPAT24、CmPAT7、CmPAT14 共同正向参与 了盐胁迫和干旱胁迫的调控,CmPAT7 同时正向响应盐胁迫、干旱胁迫和抗病胁迫。这些结 果可为研究板栗 PAT 家族基因的抗逆功能提供理论基础。

参考文献 References:

- [1] LI Y H, ZHANG Y Z, FENG F J, LIANG D, CHENG L L, MA F W, SHI S G. Overexpression of a *Malus* vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M. 26 and its influence on salt tolerance[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2010, 102(3): 337-345.
- [2] MANN M, JENSEN O N. Proteomic analysis of post-translational modifications[J]. Nature Biotechnology, 2003, 21: 255-261.
- [3] WALSH G, JEFFERIS R. Post-translational modifications in the context of therapeutic proteins[J]. Nature Biotechnology, 2006, 24(10): 1241-1252.
- [4] SEET B T, DIKIC I, ZHOU M M, PAWSON T. Reading protein modifications with interaction domains[J]. Nature Reviews Molecular Cell Biology, 2006, 7: 473-483.
- [5] SOREK N, BLOCH D, YALOVSKY S. Protein lipid modifications in signaling and subcellular targeting[J]. Current Opinion in Plant Biology, 2009, 12(6): 714-720.
- [6] LINDER M E, DESCHENES R J. Palmitoylation: policing protein stability and traffic[J]. Nature Reviews Molecular Cell Biology, 2007, 8: 74-84.
- [7] BAEKKESKOV S, KANAANI J. Palmitoylation cycles and regulation of protein function (Review)[J]. Molecular Membrane Biology, 2009, 26(1): 42-54.
- [8] GREAVES J, CARMICHAEL JA, CHAMBERLAIN L H. The palmitoyl transferase DHHC2 targets a dynamic membrane cycling pathway: regulation by a C-terminal domain[J]. Molecular Biology of the Cell, 2011, 22(11): 1887-1895.
- [9] RESH M D. Trafficking and signaling by fatty-acylated and prenylated proteins[J]. Nature Chemical Biology, 2006, 2: 584-590.
- [10] SRIVASTAVA V, WEBER J R, MALM E, FOUKE B W, BULONE V. Proteomic analysis of a poplar cell suspension culture suggests a major role of protein S-acylation in diverse cellular processes[J]. Frontiers in

Plant Science, 2016, 7: 477.

- [11] OHNO Y, KIHARAA, SANO T, IGARASHI Y. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2006, 1761(4): 474-483.
- [12] OHNO Y, KASHIO A, OGATA R, ISHITOMI A, YAMAZAKI Y, KIHARA A. Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system[J]. Molecular Biology of the Cell, 2012, 23(23): 4543-4551.
- [13] LI Y X, QI B X. Progress toward understanding protein S-acylation: prospective in plants[J]. Frontiers in Plant Science, 2017, 8: 346.
- [14] SOREK N, PORATY L, STERNBERG H, BAR E, LEWINSOHN E, YALOVSKY S. Activation status-coupled transient S acylation determines membrane partitioning of a plant Rho-related GTPase[J]. Molecular and Cellular Biology, 2007, 27(6): 2144-2154.
- [15] BATISTIČ O, KUDLA J. Analysis of calcium signaling pathways in plants[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2012, 1820(8): 1283-1293.
- [16] GAGNE J M, CLARK S E. The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated[J]. The Plant Cell, 2010, 22(3): 729-743.
- [17] WAN Z Y, CHAI S, GE F R, FENG Q N, ZHANG Y, LI S. *Arabidopsis* PROTEIN S-ACYL TRANSFERASE4 mediates root hair growth[J]. The Plant Journal, 2017, 90(2): 249-260.
- [18] ZHOU L Z, LI S, FENG Q N, ZHANG Y L, ZHAO X Y, ZENG Y L, WANG H, JIANG L W, ZHANG Y. PROTEIN S-ACYL TRANSFERASE10 is critical for development and salt tolerance in *Arabidopsis*[J]. The Plant Cell, 2013, 25(3): 1093-1107.
- [19] LAI J B, YU B Y, CAO Z D, CHEN Y M, WU Q, HUANG J Y, YANG C W. Two homologous protein S-acyltransferases, PAT13 and PAT14, cooperatively regulate leaf senescence in *Arabidopsis*[J]. Journal of Experimental Botany, 2015, 66(20): 6345-6353.
- [20] LI Y X, SCOTT R, DOUGHTY J, GRANT M, QI B X. Protein S-acyltransferase 14: a specific role for palmitoylation in leaf senescence in *Arabidopsis*[J]. Plant Physiology, 2015, 170(1): 415-428.
- [21] LI Y X, XU J F, LI G, WAN S, BATISTIČ O, SUN M H, ZHANG Y X, SCOTT R, QI B X. Protein S-acyl transferase 15 is involved in seed triacylglycerol catabolism during early seedling growth in *Arabidopsis*[J]. Journal of Experimental Botany, 2019, 70(19): 5205-5216.
- [22] LI Y X, LI H J, MORGAN C, BOMBLIES K, YANG W C, QI B X. Both male and female gametogenesis require a fully functional protein S-acyl transferase 21 in *Arabidopsis thaliana*[J]. The Plant Journal, 2019, 100(4): 754-767.
- [23] HEMSLEY PA, KEMPAC, GRIERSON CS. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in *Arabidopsis*[J]. The Plant Cell, 2005, 17(9): 2554-2563.
- [24] BATISTIČ O, REHERS M, AKERMAN A, SCHLÜCKING K, STEINHORST L, YALOVSKY S, KUDLA J. S-acylation-dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses[J]. Cell Research, 2012, 22(7): 1155-1168.
- [25] 刘晓书,刘芳,张俊. 京津冀地区板栗产业布局及前景分析[J]. 中国果树, 2022(2): 99-102.
- LIU Xiaoshu, LIU Fang, ZHANG Jun. Chestnut industry layout and prospect analysis in Beijing-Tianjin-Hebei region[J]. China Fruits, 2022(2): 99-102.
- [26] 戴永务,刘伟平.中国板栗产业国际竞争力现状及其提升策略[J].农业现代化研究,2012,33(4):

456-460.

- DAI Yongwu, LIU Weiping. Study on current status and promotion strategy of international competitiveness of Chinese chestnut industry[J]. Research of Agricultural Modernization, 2012, 33(4): 456-460.
- [27] 郝雅琼,刘红星,王泽华,聂兴华,李伊然,陈旭,王维香,秦岭,邢宇.栗疫病菌侵染板栗枝条 的显微观察[J]. 植物保护, 2022, 48(1): 179-184.
- HAO Yaqiong, LIU Hongxing, WANG Zehua, NIE Xinghua, LI Yiran, CHEN Xu, WANG Weixiang, QIN Ling, XING Yu. Microscopic observation on infection process of chestnut branches by *Cryphonectria parasitica*[J]. Plant Protection, 2022, 48(1): 179-184.
- [28] TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
- [29] CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
- [30] WANG Y P, TANG H B, DEBARRY J D, TAN X, LI J P, WANG X Y, LEE T H, JIN H Z, MARLER B, GUO H, KISSINGER J C, PATERSON A H. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49.
- [31] LESCOT M, DÉHAIS P, THIJS G, MARCHAL K, MOREAU Y, VAN DE PEER Y, ROUZÉ P, ROMBAUTS S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327.
- [32] GINESTET C. ggplot2: elegant graphics for data analysis[J]. Journal of the Royal Statistical Society Series A: Statistics in Society, 2011, 174(1): 245-246.
- [33] TIAN Y, ZENG H, WU J C, HUANG J, GAO Q, TANG D Y, CAI L P, LIAO Z Y, WANG Y, LIU X M, LIN J Z. Screening DHHCs of S-acylated proteins using an OsDHHC cDNA library and bimolecular fluorescence complementation in rice[J]. The Plant Journal, 2022, 110(6): 1763-1780.
- [34] ZHOU J M, ZHANG Y L. Plant immunity: Danger perception and signaling[J]. Cell, 2020, 181(5): 978-989.
- [35] 庞宏光. 梨棕榈酰基转移酶基因家族鉴定及 PbPAT14 功能研究[D]. 保定:河北农业大学, 2020.
- PANG Hongguang. Identification of pear palmitoyl transferases gene family and functional study of PbPAT14[D]. Baoding: Hebei Agricultural University, 2020.
- [36] DENG Y H, CHEN Q J, QU Y Y. Protein S-acyl transferase GhPAT27 was associated with *Verticillium* wilt resistance in cotton[J]. Plants, 2022, 11(20): 2758.
- [37] 张新业,李文静,朱姝,孙艳香,王聪艳,闫训友,周志国.三种伞形科蔬菜作物棕榈酰基转移酶基因家族的鉴定与分析[J].浙江农业学报,2023,35(6):1315-1327.
- ZHANG Xinye, LI Wenjing, ZHU Shu, SUN Yanxiang, WANG Congyan, YAN Xunyou, ZHOU Zhiguo. Identification and analysis of PAT gene family in three kinds of Apiaceae vegetable crops[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1315-1327.
- [38] QI B X, DOUGHTY J, HOOLEY R. A Golgi and tonoplast localized S-acyl transferase is involved in cell expansion, cell division, vascular patterning and fertility in *Arabidopsis*[J]. The New Phytologist, 2013, 200(2): 444-456.
- [39] 姜翰. 苹果棕榈酰转移酶基因 MdPAT16 促进糖分转运和增强耐盐性机理研究[D]. 杨凌: 西北农林 科技大学, 2021.
- JIANG Han. Mechanism of apple palmitoyltransferase gene MdPAT16 in promoting sugar translocation and enhancing salt tolerance[D]. Yangling: Northwest A & F University, 2021.

- [40] 吕慧,吉雪花,张中荣,朱冉冉,王世宁,谢雪果,袁雷.制干辣椒果实辣椒素对干旱、盐及其双重胁 迫的响应[J].中国瓜菜,2022,35(2):78-84.
- LÜ Hui, JI Xuehua, ZHANG Zhongrong, ZHU Ranran, WANG Shining, XIE Xueguo, YUAN Lei. Capsaicin of dry pepper fruit grown under drought, salt and combined stress condition. China Cucurbits and Vegetables, 2022, 35(2): 78-84.
- [41] ZHANG X M, MI Y, MAO H D, LIU S X, CHEN L M, QIN F. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize[J]. Plant Biotechnology Journal, 2020, 18(5): 1271-1283.
- [42] GAO J, HUANG G, CHEN X, ZHU Y X. PROTEIN S-ACYL TRANSFERASE 13/16 modulate disease resistance by S-acylation of the nucleotide binding, leucine-rich repeat protein R5L1 in *Arabidopsis*[J]. Journal of Integrative Plant Biology, 2022, 64(9): 1789-1802.