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Effects of different intercropping patterns on soil physicochemical prop-
erties and carbon-nitrogen cycling in apple orchards in the Longdong ar-

id plateau
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Abstract: [Objective] This study explores the mechanisms and optimization strategies for improving
soil quality under different intercropping patterns in apple orchards located on the arid Loess Plateau of
eastern Gansu, a region characterized by fragile ecological environments and limited natural resource
availability. The sustainability of orchard systems in such regions depends heavily on soil health, which
is influenced by physical, chemical, and biological processes. Recognizing the urgent need for effective
and ecologically sound agricultural practices, this research focused on how various intercropping sys-
tems can restore and enhance soil functions in apple orchards for a long time. [Methods] Utilizing a
comprehensive assessment framework, the study integrated data on soil physicochemical properties, car-

bon and nitrogen (C-N) cycling, and microbial enzyme activities to provide a holistic understanding of
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soil system responses. Three representative intercropping treatments—natural grass cover, onion inter-
cropping, and rapeseed intercropping—were implemented in comparison with traditional clean tillage,
which involved long-term maintenance of bare soil devoid of vegetative cover. Field experiments were
conducted over three consecutive apple growing seasons in a representative orchard on the eastern
Loess Plateau, where climatic conditions were semi-arid, precipitation was low and uneven, and soil
degradation due to prolonged cultivation became a widespread concern. Each treatment was monitored
continuously, and a multi-index evaluation approach was adopted to track the effects of the different sys-
tems on soil quality parameters. [Results] All three intercropping patterns exerted beneficial effects on
soil physical structure, albeit through different mechanisms. The natural grass cover system (C) gradual-
ly improved soil structure through a combination of aboveground canopy shading and the formation of
a dense and fibrous root network in the subsurface soil. These roots contributed to aggregate formation
and stabilization, which were crucial for enhancing soil porosity and resistance to erosion. Quantitative
data revealed that the sand content in the 0-20 cm and 20-40 cm soil layers decreased by 21.10% and
10.40%, respectively, under this treatment, suggesting a shift towards finer, more cohesive soil parti-
cles. More importantly, this shift led to improved water-holding capacity and nutrient retention in the
root zone. During periods of drought, water content in the 20-40 cm subsurface soil was 25%—-30%
higher than that in clean tillage plots (CK), with a relative increase in water retention capacity of
77.15%. These improvements were critical for supporting the physiological needs of apple trees during
water-limited periods, offering a potential strategy for mitigating drought stress in orchard systems. In
contrast, scallion (A) and rapeseed (B) intercropping primarily improved soil structure through biologi-
cal drilling effects created by their deep and vigorous taproots. These roots penetrated the compacted
layers, forming natural channels that facilitate water infiltration and gas exchange. Consequently, these
systems were associated with a reduction in soil bulk density by 7.97% to 8.70% and an increase in to-
tal soil porosity by 8.66% to 9.74%, resulting in significantly better aeration and drainage. Such chang-
es created a more favorable environment for root respiration and microbial colonization, supporting
overall soil ecosystem functioning. In terms of nutrient dynamics, particularly the carbon and nitrogen
cycles, scallion intercropping showed marked enhancements in the accumulation and transformation of
organic matter. Compared to the clean tillage control, the total organic carbon (TOC), soil organic mat-
ter (SOM), and microbial biomass carbon (MBC) under onion intercropping increased by 16.73%,
16.78%, and 21.58%, respectively. The soluble organic nitrogen (SON) content also rose significantly
by 16.00%, indicating greater nitrogen availability for plant uptake and microbial utilization. These
changes not only reflected improvements in the base fertility of the soil but also suggested that onion
roots may influence rhizosphere processes that accelerated organic matter mineralization and nutrient re-
lease. Microbial activity, another key indicator of soil health, was significantly stimulated under natural
grass cover, particularly in relation to enzymes involved in the decomposition of plant litter and the cy-
cling of carbon. Enzyme assays revealed dramatic increases in the activities of -1, 4- glucosidase
(365.78%), p-1, 4-N-acetylglucosaminidase (115.38%), and /-1, 4-xylosidase (145.30%) relative to the
clean tillage treatment. These enzymes are essential for breaking down complex carbohydrates such as
cellulose and chitin, releasing simpler carbon compounds that are readily used by soil microbes. The en-
hancement of enzymatic activity under natural grass indicated a more dynamic and responsive soil mi-
crobial community, which accelerated the turnover of organic matter and facilitated the formation of a
resilient “plant-soil-microbe” feedback loop. Further correlation analysis confirmed that soil physico-

chemical traits—such as bulk density, porosity, moisture content, and particle composition—had signifi-



54

S R S 4

cant impacts on the distribution, transformation, and stability of carbon and nitrogen fractions. Notably,
the response mechanisms differed between surface (0-20 cm) and subsurface (20-40 cm) soil layers, in-
dicating vertical heterogeneity in how intercropping influenced soil function. This spatial variability
suggested that intercropping strategies should be tailored to address specific constraints within soil pro-
files. For example, in orchards where the surface compaction is severe and air - water balance is disrupt-
ed, onion or rapeseed intercropping may be more effective due to their root system architecture. Con-
versely, in drought-prone regions with poor water retention, natural grass cover offers a low-input and
ecologically aligned solution for maintaining stable moisture conditions throughout the growing season.
Additionally, in terms of improving carbon and nitrogen transformation efficiency, onion intercropping
contributes by increasing the soil’s capacity to generate labile organic fractions, thereby building long-
term fertility. Meanwhile, natural grass promotes faster organic matter decomposition through enzyme
activation, reinforcing the carbon cycling loop and ensuring a continuous supply of microbial energy
substrates. While each strategy offers unique benefits, both contribute meaningfully to enhancing soil
fertility and ecological stability. [Conclusion] In conclusion, this study demonstrates that different inter-
cropping systems exert distinct, yet complementary, effects on soil physical properties, nutrient cycling,
and biological activity in apple orchards under arid conditions. By elucidating the ecological mecha-
nisms underlying these effects, the research provides a scientific basis for designing targeted soil man-
agement strategies tailored to specific environmental constraints and production goals. These findings
offer valuable insights for the development of sustainable orchard practices in water-limited regions and
contribute to broader goals of ecological restoration and agricultural sustainability.

Key words: Apple; Longdong dry tableland; Intercropping; Soil physical and chemical properties; Car-
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Fig. 1 Effects of different intercropping modes on soil physicochemical properties
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Fig. 2 Effects of different intercropping patterns on soil mechanical composition
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Table 1 Effects of different intercropping patterns on soil carbon components

wAEE wOTiEME w(G S wlEkL w(EHA  wlREf
wCEHEHERD wCENLED  w(aRR) LUN-RT9) HOBO  BNLEO AHLHO LIk HLRRD
Qb3 Total organic ~ Organic mat- Total carbon  Microbial bio- Dissolved  Respirable  Particulate or- Reconstruct- Light fraction
Treatment carbon content/ ter content/  content/ mass carbon  organic car- organic car- ganic carbon ed organic  organic carb-
(g-kg" (g-kg" (g-kgh content/ bon content/ bon content/ content/ carbon cont- on content/
(mg-kg" (mg-kg"  (g-kgH (g-kg" en/(g-kg")  (g-kgh
0~20cm CK 9.92+0.33ab 17.10+0.56b 22.10+0.16 ab 36.69+0.76 b 1.8740.33 ¢  5.85£0.24b 8.29+0.27 ab 1.63+0.09b 67.02+3.75 b
A 11.58£0.01a 19.97+0.14a 23.24+0.14a 43.14+0.69a 2.8440.36a 6.3740.60a 9.41+0.20a 2.17+0.13a 81.48+1.96a
B 7.13#0.17b  12.28+0.30c¢ 20.6740.18 b 28.23+3.79 c¢d 2.1240.28b  3.69+0.21 ¢ 6.59+0.26b 0.54+0.12 ¢ 53.39+3.41 cd
C  7.34+036b 12.65+0.62c 20.4940.22b 30.48+1.05¢ 1.83+0.24c¢ 3.76+0.21c 6.72+0.43 b 0.62+0.08 ¢ 58.28+6.80 ¢
20~40 cm CK 9.07+0.28 a  15.64+0.49a 20.89+0.76a 42.314091a 2.39+021b 4.04+0.44b 7.77+0.36b 1.30+0.09b 87.02+6.23 ab
A 827+0.01b 14.26+0.16 ab 21.83+0.31a 41.73£1.59a 2.43+033b 4.79+0.52b 7.14+0.07b 1.14+0.14b 83.44+7.39b
B 6.284£0.39c¢ 10.82+0.67b 19.93+0.24b 34.39+0.60b 2.17£0.22b  2.61£0.39b 5.59+0.23 ¢ 0.69+0.16 ¢ 41.35+2.34 ¢
C  4.76+0.15d 6.34+0.69 ¢ 12.74+0.88 ¢  12.93+0.88 ¢ 8.44+0.52a 27.24+1.70a 11.2543.50 a 2.39+1.20a 97.73£31.22a

VE: AP FNG F R R 22 7 B3 (P<0.05). TA.

Note: Different small letters in the same column indicate significant difference at P<<0.05. The same below.

*2 ARIEWERAN TIRRE S HIFE

Table 2 Effects of different intercropping modes on soil nitrogen components

wOBTRLA HLED w(EZ)

wAED A E RO wCAlVE A HLED

"l% eﬂ:tment P‘articulate organic . Total riitrogen content/ Microbial biomass . Dissolved organic nitrogen
nitrogen content/(g-kg") (g-kg" nitrogen content/(mg-kg™) content/(mg-kg™)
0~20 cm CK 1.05+0.01 ab 3.76+0.15b 2.85+0.24 b 0.25+0.02 ab
A 1.31+0.03 a 4.71+0.65 a 4.20+0.28 a 0.29+0.02 a
B 0.93+0.06 b 2.66+0.19 ¢ 1.13+£0.22 ¢ 0.15+0.01 b
C 0.94+0.09 b 3.74+0.29 b 1.78+0.25 ¢ 0.16+0.02 b
20~40 cm CK 1.03+£0.05 b 3.7840.46 b 4.52+0.23 b 0.23+0.02 b
A 0.99+0.02 b 3.48+0.36 b 1.60+0.63 d 0.19+0.01 b
B 0.79+0.01 ¢ 2.12+¢0.17 ¢ 3.04+0.39 ¢ 0.11+0.01 b
C 3.04+0.87 a 10.28+6.29 a 18.0712.52 a 21.27£1.35a
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CK A B

0~20 cm

20~40 cm

Y

B-1,4-xylosidase activity/(nmol-g"-h™)
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c
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20~40 cm
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=
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(r=-0.96~-0.99) ; -1,4-F & M P BTG 1 5 & 7 2
1 IE A 22 (7=0.97~1.00) , (B 5 FB 43 B 41 43 2 74
K (r=-0.96~-0.99) ; f-1 4- AR WEFEEIEPE 5 0k 5 &
BREE AR G=1.00), -5 &4 5 i 2 1E A
(r=0.96~0.99) .
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1

-2 RE K FR R T
(nmol-g"'-h

Cellobiose hydrolase activity/

e Lo Q9
o B »

o
o o

—_ = NN
N N O B

CK A B

CK A B C

activity/(nmol-g"'-h™)

f-1,4-N-acetyl glucosaminidase

0~20 cm

20~40 cm

B-1,4-N- 2L 35 G HE 0 2 T 17

SN
g

CK A B

CK A B C

DN N
e
o o o

SR ALK R 1k
N
(=)

Leucine aminopeptidase
activity/(nmol-g"'-h™)
S
(=]

=
U

by

=)

o
=3

*
=3

0~20 cm

20~40 cm

a

Lt

CK A B

CK A B C

0~20 cm
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FET 2R VI E RIS R (SED o AN [ANG T BERRAC PR 22 5+: 5 2 (ANOVA , Duncan % 5 HUEL, P<<0.05)
Bars represent mean values, and error bars indicate standard error (SE). Different small letters denote significant differences among treatments
(ANOVA, Duncan’s multiple range test, P<<0.05).
3 FRIEEER I T IREEE MR R0

Fig. 3 Effects of different intercropping patterns on soil enzyme activities
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[ %% & Bulk density
PRARE 7K 2 Volumetric water content
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IR
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Soil enzyme activity Soil mechanical composition Soil physical properties
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R
P <005 $
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20~40 cm

Fig.4 Correlation analysis of soil physicochemical properties and soil carbon and nitrogen components in different

intercropping modes
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