DOI:10.13925/j.cnki.gsxb.20210168

对萼猕猴桃 CDPK 基因家族鉴定 及非生物胁迫应答分析

张永杰,白丹凤, Muhammad Abid, 李 志,方金豹, 钟云鹏*

(中国农业科学院郑州果树研究所•果树生长发育与质量控制重点实验室,郑州 450009)

摘 要:【目的】鉴定对萼猕猴桃(Actinidia valvata)CDPK家族基因,并分析其在不同组织的表达模式以及对盐胁迫和 淹水胁迫的响应。【方法】基于3代全长转录组测序数据,通过多种生物信息学手段,分析和鉴定对萼猕猴桃CDPK家 族基因,利用实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)技术分析这些基因在不同组织中的表达,及在 不同非生物胁迫条件下的表达情况。【结果】在对萼猕猴桃基因型KR5的全长转录组测序数据中共鉴定出63个CDPK 基因,命名为AvCDPK1~AvCDPK63。系统发育分析将AvCDPK基因蛋白分为4个亚家族,同一亚家族具有相似的结 构和基序(motif)。AvCDPK基因存在明显的组织表达特异性。AvCDPK49在盐胁迫和淹水胁迫条件下,均显著诱导 表达,AvCDPK30和31在2种胁迫下均显著抑制表达。【结论】在对萼猕猴桃中共鉴定出63个CDPK基因,系统发育树 显示AvCDPK基因家族与拟南芥CDPK基因家族在进化上高度保守。不同组织中AvCDPK的表达量存在明显差异, 其中AvCDPK49受盐害、淹水诱导显著高表达,表明其可能在猕猴桃的耐盐和耐涝响应过程中发挥着重要作用。 关键词:对萼猕猴桃;全长转录组;CDPK基因家族;盐胁迫;淹水胁迫

中图分类号: S663.4 文献标志码: A 文章编号: 1009-9980(2021)10-1653-15

Identification of *CDPK* family genes and their response to abiotic stresses in *Actinidia valvata*

ZHANG Yongjie, BAI Danfeng, MUHAMMAD Abid, LI Zhi, FANG Jinbao, ZHONG Yunpeng*

(Zhengzhou Institute of Fruit Trees/Key Laboratory of Fruit Tree Growth and Quality Control, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China)

Abstract: [Objective] The experiment was conducted to identify the *CDPK* family genes in *Actinidia valvata* and analyze their expression patterns in different tissues and responses to salt and waterlogging stress. [Methods] Based on the full-length transcriptome sequencing data of third-generation RNA-seq, the *CDPK* family genes of *Actinidia valvata* were analyzed and identified by various bioinformatics methods. qRT-PCR was used to analyze the expression of these genes in stem, leaf, petiole, pedicel, sepal and petal, as well as their expressions under different abiotic stresses. One year old KR5 kiwifruit plantlets (16 cm × 16 cm) under waterlogging stress were placed in a blue plastic turnover box (45 cm × 35 cm × 16 cm) filled with water. The water level was kept at 2 cm above the soil surface. Four time points of 0, 3, 7 and 11 d were set as sampling times. The root samples after waterlogging stress were harvested as experimental materials. KR5 potted plantlets (16 cm × 16 cm) were cultured in a plastic container (39 cm × 29 cm × 12 cm) filled with Hoagland nutrient solution. Oxygen was supplied by an oxygenerator. The concentration of salt treatment was 0.6% NaCl. The sampling time points were set as 0, 0.5, 1, 3, 5 and 7 d. [Results] A total of 63 *CDPK* genes, named as *AvCDPK*1-*AvCDPK*63, were iden-

收稿日期:2021-04-16 接受日期:2021-06-24

基金项目:国家自然科学基金青年科学基金(31801846);中国农业科学院科技创新工程(CAAS-ASTIP-2020-ZFRI);国家成都农业科技中 心项目(NASC2020AR07);中央级科研院所基本科研业务费专项(Y2019LM13)

作者简介:张永杰,男,在读硕士研究生,研究方向为果树抗性资源挖掘。Tel:17854231362,E-mail:2465087813@qq.com

^{*}通信作者 Author for correspondence. Tel:0371-65330995; E-mail: fangjinbao@caas.cn; Tel:0371-55906990, E-mail: zhongyunpeng@caas.cn

tified from the full-length transcriptome sequencing data of kiwifruit genotype KR5. They all have typical characteristic domains: variable domain, catalytic domain (activator domain), junction domain (autoinhibitory domain) and regulatory domain (calmodulin-like domain / CAM-LD). Furthermore, the CDS sequence length, relative molecular weight, isoelectric point, EF-hand structure, palmitoylation and myristoylation sites of AvCDPK family genes were analyzed. The CDS sequences of 63 AvCDPK genes family members ranged from 1068 bp to 1893 bp, with amino acid length ranging from 355 (AvCD-PK54 and 60) to 630 aa (AvCDPK18 and 19), molecular weight ranging from 40.10 to 70.97, and isoelectric point ranging from 5.10 to 9.13. Through statistical analysis, 53 AvCDPKs have four EF-hand domains, and 10 AvCDPKs have three EF-hand domains (AvCDPK3, 14, 23, 25, 28, 51, 59, 61, 62 and 63). EF-hand domain is the site of recognition and binding of Ca^{2+} , which indicates that different members of AvCDPK family genes may play a different rolein change of Ca²⁺ concentrations. According to the prediction of 63 amino acid modification sites of AvCDPK proteins, 37 members have palmitoylation site, 11 members have myristoylation site, and 15 members have both palmitoylation and myristoylation sites. Through phylogenetic analysis, same as AtCDPK(Arabidopsis thaliana) gene family, AvCDPKs were divided into four subfamilies. The genes in the same subfamily had similar gene structure and motifs. In addition, we identified 15 conserved motifs, of which motif10 was distributed in subfamilies III and IV, but not in II and some members of subfamilies I. Motif15 exists in subfamilies I and III, while subfamilies II and IV are absent. Motif14 only exists in subfamily II. AvCDPK genes have obvious tissue-specific expression. For example, AvCDPK11 was highly expressed in leaves, but AvCDPK29, 41 and 63 were low expressed; AvCDPK43 was highly expressed in petioles, but low expressed in sepals and flowers; AvCDPK36 was highly expressed in pedicels, and AvCDPK36, 38, 43 and 53 were low expressed in petals. These results suggest that different AvCDPK gene may play different roles in growth and development of Actinidia valvata genotype KR5. The expression levels of AvCD-PK6, 11, 28, 44, 45, 49 and 61 were up-regulated under salt stress, and the expression levels of AvCD-PK36, 41, 44, 45, 46, 47, 48, 49 and 50 were up-regulated in waterlogging test. The expression levels of AvCDPK44, 45 and 49 were up-regulated in both salt stress and waterlogging stress (all up-regulated more than 2 folds). The expression levels of AvCDPK2, 14, 21, 31 and 38 were down regulated by more than 10 folds under salt stress, and the expression levels of AvCDPK28, 30 and 31 were down-regulated by more than 5 folds under waterlogging stress. The expression levels of AvCDPK31 were significantly down-regulated in both stresses. These results indicated that the different AvCDPK genes played different roles in the process of salt stress and waterlogging stress in Actinidia valvata. In addition, there were different expression patterns of the same gene under two stresses. The expression of AvCDPK28 increased significantly under waterlogging stress, but decreased under salt stress, indicating that AvCD-*PK28* may participate in different regulatory pathways under different stresses. [Conclusion] A total of 63 CDPK genes were identified in Actinidia valvata. Phylogenetic tree showed that these genes and AtCDPK genes were highly conserved in evolution. There were significant differences in the expression of AvCDPKs among different tissues. Three members were highly expressed, which were induced by salt and waterlogging stresses, indicating that these members may play an important role in the response to salt and waterlogging tolerance in Actinidia valvata.

Key words: *Actinidia valvata*; Full-length transcriptome; *CDPK* gene family; Salt stress; Waterlogging stress

Ca²⁺作为植物体内重要的第二信使,参与多种 信号传导途径,在植物生长发育和环境刺激反应中 起到重要作用^[1-2]。植物受到外界刺激后,胞质中 Ca²⁺离子浓度发生多次升降,产生Ca²⁺离子振荡,这 种信号被不同的钙离子感受器识别,经由钙传感蛋 白向下游级联放大与传递,使下游的蛋白发生磷酸 化作用和构象改变,从而调节基因的表达,进而调控 植物发生相应的生理生化反应^[3]。植物中有4种钙 传感蛋白:钙调素(CaM)、钙调素类蛋白(CaML)、 钙依赖蛋白激酶(CDPK)和钙调磷酸酶 B 类蛋白 (CBL)的互作蛋白(CIPK)。CDPK能够不依赖于钙 调素直接感受Ca²⁺离子浓度的变化,在植物的生长 发育和逆境胁迫中扮演重要角色,因而被广泛研 究^[4]。

CDPK也被称为CPKs,具有4种典型的结构域: N末端的可变域、丝/苏氨酸(Ser/Thr)激酶域、自抑 制域和类钙调素域(CaM-LD)^[5-6]。CDPK广泛存在 于植物界以及一些原生动物中^[7-9]。目前,已在多种 植物中分析和鉴定出 CDPK 基因,且不同植物中 CDPK 基因数目存在差异,如拟南芥中有34个^[9],葡 萄中有19个^[10],凤梨中有17个^[11],梨中有26个^[12],水 稻中有31个^[13]。

CDPK基因家族广泛存在于植物的各个组织, 如根、茎、叶、花、果实以及种子,在植物生长发育和 形态构建过程中发挥着重要作用[4.14]。研究发现,拟 南芥AtCDPK32和CNGC18在花粉管的生长过程中 有协同作用^[15]。谷子SiCDPK4主要在叶子、根和穗 中表达,在灌浆期产量较高的杂交子代的叶片和穗 中SiCDPK4的转录丰度显著高于中、低产量的杂交 子代,表明SiCDPK4可能与谷子产量的形成有 关^[16]。此外, CDPK基因家族在植物抵御生物胁迫 和非生物胁迫中也发挥着重要作用。大麦HvCD-PK2a在干旱胁迫下表达量显著上调,进一步研究发 现HvCDPK2a是双特异性钙依赖蛋白激酶,在大麦 干旱胁迫中起负调节作用^[17]。拟南芥AtCDPK10和 热休克蛋白家族基因HSP1相互作用,在脱落酸(abscisic acid, ABA)和Ca²⁺介导的气孔运动中发挥作 用,从而提高植株的抗旱性^[18]。黄瓜*CsCDPK5*为淹 水胁迫响应基因,参与下胚轴不定根的形成¹¹⁹。大 豆 GmCDPK3 和 GmCDPK31 基因在遭受食草动物 的伤害后,转录丰度迅速增加,表明这2个基因可能 在大豆防御食草动物侵袭中扮演着重要角色[20]。

猕猴桃因富含维生素C、叶酸和多种矿质元素 等营养成分以及独特的口感而广受消费者的喜爱。 近年来,我国猕猴桃产业发展迅速,栽培面积和产量 均居世界首位。然而,猕猴桃对栽培条件要求较高, 易受冻害、高温灼伤、病虫害、涝害和盐害等不利环 境因素的影响,严重制约了产业的健康发展[2]。因 此,开展猕猴桃抗逆方面的研究工作对于抗性育种 中亲本材料的选择有着重要意义。笔者前期研究发 现,对萼猕猴桃(Actinidia valvata)基因型KR5在淹 水胁迫14d后,仍能够正常生长并发出新档:在质量 分数 0.6% 盐处理下, KR5 表现出较强的耐受 性[22-24]。然而, CDPK家族基因是否参与了对萼猕猴 桃对非生物胁迫的响应目前还未见报道。由于对萼 猕猴桃基因型KR5的染色体倍性为六倍体(已通过 流式细胞仪测定),笔者在本研究中以淹水0h和72h 的根、茎和叶片混合样本为材料进行3代全长转录 组测序(数据暂未发表),分析和鉴定对萼猕猴桃 CDPK 基因家族,并对该家族基因在不同组织中的 表达以及在盐胁迫和淹水胁迫下的表达模式进行了 测定,以全面了解和认识CDPK基因家族在对萼猕 猴桃生长发育和逆境胁迫响应过程中的作用,为抗 性基因的挖掘和抗性机制的解析奠定基础。

1 材料和方法

1.1 对萼猕猴桃 CDPK 基因家族的鉴定

在 Pfam 数据库(http://pfam.xfam.org/)中下载 CDPK家族基因的核心蛋白激酶结构域(PF00069) 和 EF-hand 结构域(PF13499)的隐马尔科夫模型 (hidden markov model, HMM), 进行对萼猕猴桃基 因型KR5的全长转录组数据筛选,并对筛选结果进 行分析,删除不完整(非ATG开始的基因序列)和重 复序列。使用在线工具 Expasy PROSITE (https:// prosite.expasy.org/) 和 InterPro (http://www.ebi.ac.uk/ interpro/)对筛选结果进行验证,以CDPK基因家族 的3个典型结构域(核心蛋白激酶结构域PF00069、 EF-hand结构域PF13499和丝氨酸和苏氨酸蛋白激 酶位点 SITEIPR008271)为鉴定依据。利用在线工 具 Expasy ProtParam (https://web.expasy.org/protparam/)对AvCDPK蛋白的分子质量、等电点等进行 分析。利用在线工具 Myristoylator (https://web.expasy.org/myristoylator) 和 Palmitoylation (CSSD-Plam program)预测 AvCDPK 蛋白的肉豆蔻酰化

(myristoylator)和棕榈酰化(palmitoylation)位点。

1.2 系统进化树,基因结构和motif分析

从拟南芥数据库中(The Arabidopsis Information Resource, TAIR, https://www.arabidopsis.org/)下 载34个AtCDPK蛋白序列。利用MEGA7.0软件, 将下载的34个AtCDPK蛋白与鉴定得到的AvCD-PK蛋白进行序列比对,通过Neighbor-joining法构 建系统进化树^[25]。利用在线工具MEME(https:// meme-suite.org/meme/tools/meme)进行蛋白motif分 析(motif数量设置为15)。

1.3 植物材料和胁迫处理

KR5猕猴桃为保存在中国农业科学院郑州果树 研究所新乡综合试验基地猕猴桃资源圃的3年生种 质资源,于2020年春季取同一新梢的茎、叶、叶柄、 花梗、萼片和花瓣为试材,分析63个AvCDPK基因 的组织特异性表达。盐胁迫处理植株为1年生KR5 组培盆栽苗(盆直径×高为16 cm×16 cm),置于装满 Hoagland 营养液的塑料容器(39 cm×29 cm×12 cm) 中,用ACO-009D型打氧机(广东海利)供氧,盐处理 质量分数为0.6% NaCl,设置0、0.5、1、3、5、7 d 共6 个时间点为取样点,取根样为试验材料。淹水胁迫 处理植株为1年生KR5猕猴桃组培盆栽苗(盆直径× 高为16 cm×16 cm,基质质量比为堆肥:珍珠岩:蛭 石=2:1:1),置于装满水的蓝色塑料周转箱(规格 45 cm×35 cm×16 cm),保持水位在土壤表面上方 2 cm 处,设置 0、3、7、11 d 共4个时间点为取样点,取 胁迫后的根样为试验材料。

1.4 试验试剂和表达量分析

利用快速通用植物 RNA 试剂盒(北京华越洋) 从 KR5 猕猴桃的不同组织中提取总 RNA;利用 ReverTra Ace[®] qRCR RT Kit(上海东洋坊)试剂盒合成 第一链 cDNA;使用 LightCycler 480 II 仪器(瑞士巴 塞尔罗氏)进行基因表达量的检测。所有试验进行 3 次生物学重复。使用 Primer 7.0(Premier Biosoft International, USA)软件进行实时荧光定量 PCR (quantitative real-time PCR, qRT-PCR)引物设计。 以猕猴桃肌动蛋白基因 Actin(Achn107181)为对照 进行扩增。AvCDPK 基因的相对表达水平采用 2^{-ΔΔCT}法进行标准化分析^[26]。用 TBtool软件构建基 因表达水平的热图。

1.5 数据分析

数据统计分析采用 SPSS 20.0 软件进行。

2 结果与分析

2.1 对萼猕猴桃 CDPK 基因家族的鉴定

通过筛选对萼猕猴桃的转录组数据,并结合在 线工具 ExPASy- PROSITE (https://prosite.expasy. org/)和 InterPro (http://www.ebi.ac.uk/interpro/result/ InterProScan/#table)的结构域分析,共鉴定出63个 CDPK基因。所有63个AvCDPK基因编码的蛋白均 包含完整的特征结构域:可变域、催化域(激酶域)、 连接域(自抑制域)和调控域(类钙调素域/CaM-LD)。通过ProtPaeam tool 在线分析,63个AvCDPK 基因编码序列(coding sequence, CDS)长度范围为 1068~1893 bp, 氨基酸长度范围为355(AvCDPK54 和 60)~630(AvCDPK18 和 19)aa,分子质量范围为 40.10~70.97 kDa,等电点范围为5.10~9.13。通过统 计分析,有53个AvCDPK蛋白具有4个EF-hand结 构域,10个AvCDPK蛋白具有3个EF-hand结构域 (AvCDPK3、14、23、25、28、51、59、61、62和63)。通 过对63个AvCDPK基因氨基酸修饰位点分析,37 个具有棕榈酰化位点,11个具有肉豆蔻酰化位点, 15个同时具有棕榈酰化位点和肉豆蔻酰化位点(表 1)。

2.2 系统进化树分析

为了明确63个AvCDPK基因的进化关系,将鉴 定得到的AvCDPK基因的蛋白序列与拟南芥的34 个AtCDPK基因的蛋白序列利用MEGA7.0进行序 列比对并构建系统发育树。对萼猕猴桃的63 个 AvCDPK蛋白被分为4个亚家族,分别包括26、11、 14和12个成员,并将63个AvCDPK基因依次命名 为AvCDPKI~AvCDPK63(图1)。

2.3 AvCDPK基因家族蛋白结构分析

为了解AvCDPK基因编码的蛋白结构特点,进行了motif基序和结构域分析(图2和图3)。结果表明,SPARC_Ca_bdg结构域(与Ca²⁺亲合度有关)仅存在于第IV亚家族。在鉴定的15个motif中,motif10在第III和IV亚家族中均有分布,在部分第 I亚家族和第II亚家族中没有分布。motif15存在于第 I 和第III亚家族,而在第 II 和第 IV亚家族中缺失。 motif14 仅存在于第 II 亚家族。

2.4 AvCDPK基因家族的组织特异性表达

CDPK 基因通过 EF-hand 结构感受 Ca²⁺离子浓度的变化,解除自抑制作用激活激酶域,进而传递信

表 1 对萼猕猴桃 CDPK 基因家族成员信息 Table 1 The information of CDPK gene family in Actinidia valvata

基因名称 Gene name	基因 ID Gene ID	编码序列长度 Coding sequence length/bp	长度 Length/ aa	分子质量 Molecular weight/kDa	等电点 Isoelectric point	手性结构个数 Number of EF-hand	N-棕榈酰化 N-palmi- toylation	N-肉豆蔻酰化 N-myris- toylation
AvCDPK1	>i2_HQ_K_c21125/f2p5/2497	1695	564	62.92	5.35	4	是 Yes	否 No
AvCDPK2	>i2_HQ_K_c147549/f28p1/2730	1698	565	63.03	5.36	4	是 Yes	否 No
AvCDPK3	>i3_LQ_K_c35528/f1p0/3203	1653	550	61.45	5.27	3	是 Yes	否 No
AvCDPK4	>i2_HQ_K_c74836/f14p3/2636	1689	562	62.79	5.20	4	是 Yes	否 No
AvCDPK5	>i2_LQ_K_c161089/f1p1/2689	1602	533	59.50	5.10	4	是 Yes	否 No
AvCDPK6	>i2_LQ_K_c6353/f1p5/2582	1689	562	63.03	5.56	4	是 Yes	否 No
AvCDPK7	>i2_HQ_K_c124485/f2p3/2465	1689	562	62.96	5.55	4	是 Yes	否 No
AvCDPK8	>i2_LQ_K_c118590/f1p4/2729	1689	562	62.80	5.38	4	是 Yes	否 No
AvCDPK9	>i1_LQ_K_c11366/f1p7/1889	1539	512	56.86	5.91	4	是 Yes	否 No
AvCDPK10	>i2_HQ_K_c115014/f2p5/2044	1521	506	57.05	5.40	4	否 No	否 No
AvCDPK11	>i2_LQ_K_c70057/f1p5/2049	1530	509	57.45	5.55	4	否 No	否 No
AvCDPK12	>i1_HQ_K_c69309/f4p4/1910	1518	505	56.69	5.27	4	否 No	否 No
AvCDPK13	>i1_HQ_K_c32097/f7p5/1980	1527	508	57.01	5.27	4	否 No	否 No
AvCDPK14	>i1_LQ_K_c41869/f2p4/1817	1278	425	48.15	5.87	3	否 No	否 No
AvCDPK15	>i2_LQ_K_c177755/f1p10/2123	1527	508	57.09	5.48	4	否 No	否 No
AvCDPK16	>i2 HQ K c36822/f2p1/2926	1791	596	66.17	5.20	4	是 Yes	否 No
AvCDPK17	>i2 HQ K c18939/f3p1/2954	1800	599	66.54	5.28	4	是 Yes	否 No
AvCDPK18	>i2 HO K c37889/f3p3/2483	1893	630	70.81	5.42	4	是 Yes	否 No
AvCDPK19	>i2 HO K c1894/f14p3/2746	1893	630	70.97	5.38	4	是 Yes	否 No
AvCDPK20	>i2 HO K c38140/f2p9/2962	1731	576	64.18	5.54	4	是 Yes	否 No
AvCDPK21	>i2 HO K c97170/f22p9/2875	1731	576	64.13	5.51	4	是 Yes	否 No
AvCDPK22	>i2 HO K c75380/f4p9/2810	1731	576	64.13	5.56	4	是 Yes	否 No
AvCDPK23	>i3 LO K c38155/f1p9/3434	1620	539	60.11	5.54	3	是 Yes	否 No
AvCDPK24	>i2 LO K c45006/f7p7/2885	1731	576	64 25	5 64	4	是 Yes	否 No
AvCDPK25	>i2 LO K c77631/f1p6/2662	1620	539	60.16	5 67	3	是 Yes	否 No
AvCDPK26	>i2_HO_K_c40529/f2p6/2203	1731	576	64 17	5.64	4	是 Yes	否 No
AvCDPK27	>i1 LO K c74800/f1p1/2088	1545	514	57.97	6.07	4	是 Yes	否 No
AvCDPK28	>i2 LO K c21657/flp1/2552	1506	501	56.14	6.98	3	是 Yes	昰 Yes
AvCDPK29	>i2_HO_K_c77430/f2p1/2407	1551	516	57.92	7.64	4	是 Yes	是 Yes
AvCDPK30	>i1 LO K c38133/f1n3/1750	1143	380	42.95	5.18	4	否 No	否 No
AvCDPK31	>i2 I O K c79896/f1p1/2313	1548	515	58.04	5 99	4	昰 Ves	昰 Ves
AvCDPK32	>i2 HO K c97752/f5p2/2510	1653	550	61.83	6.18	4	是 Yes	是 Yes
AvCDPK33	>i2_HQ_K_c106462/f2p2/2695	1659	552	62.02	6.18	4	是 Ves	是 Ves
AvCDPK34	>i2_HQ_K_c47885/f3n3/2533	1644	547	61 34	6.48	4	是 Ves	是 Ves
AvCDPK35	>i2_IQ_K_645214/f1n3/2459	1656	551	61 71	6 3 9	4	是 Ves	是 Ves
AvCDPK36	>i2_LQ_K_c128445/f1n3/2661	1422	473	53.41	5.77	4	是 Ves	之 No
AvCDPK37	>i2_LQ_K_c79889/f1p3/2841	1644	547	61.45	6.69	4	是 Ves	昰 Ves
AvCDPK38	>i2_HO_K_c34350/f22n2/2182	1596	531	59.46	5.78	4	是 Ves	至 No
AvCDPK30	>i2_IQ_K_054556/122p2/2102	1599	532	59.40	5.64	4	是 Ves	古 No
AVCDI KJ	$\sim 12 LQ_K c 111130/11p2/2129$	1593	530	59.01	5.64	4	走 TCS 	古 No
AvCDPK41	>i4_LQ_K_c67064/f1p1/2100	1614	537	61.00	5.04 6.02	4	是 TCS 是 Vec	日 No
AVCDI K41	$\sim 12 LQ_K = 0.004/11p1/2100$	1602	522	50.01	6.35	4	走 Its 旦 Vas	走 Its 不 No
AVCDI K42	>i2_LQ_K_0142998/11p4/2030	1605	524	60.00	6.47	4	走 Its 旦 Vas	古 No
AVCDE K43	>12_11Q_K_050585/12p0/2507	1003	354	41.04	5.99	4	走 ICS 不 No	古 No
AVCDF K44	>:2 LO K a10200/f1=22/2188	1005	510	50.00	5.00	4	口 INU 旦 INU	古 No
AVCDFK45	>15_LQ_K_c19290/11p22/5188	1502	510	50.00	5.91	4	走 ICS	百 NO 不 N-
AVCDFK40	$\sim 12 \text{ HQ} \text{ K} \text{ c} 148412/131p3/2014}$	1593	520	50.77	5.85	4	走 ICS 見 Vag	百 NO 不 No
AVCDPK4/	<pre>>12_LQ_K_0105085/11p3/2149</pre>	1393	330	JY.//	5.70	4	压 IES 不 Na	百 NU 不 Na
AVCDPK48	<pre>>12_LQ_K_c41892/11p0/2484</pre>	1281	420	48.44	5.02	4	自 NO	盲 NO 不 N-
AVCDPK49	<pre>>12_LQ_K_C1/2339/T1p8/2500</pre>	1014	33/ 527	00.75	5.75	4	疋 res 艮 v	百 NO 不 N-
AVUDPK30	>12_HQ_K_01498/12p10/2015	1014	507	57.21	0.05	4	定 Ies 目 V	宙 No 不 N
AVUDPK31	>12_LQ_K_c21019/11p4/3302	10/9	255	J/.21	3.98	5	定 Ies 目 V	宙 No 不 N
AvCDPK52	>12_LQ_K_c28981/f1p3/2718	1068	355	40.10	8.99	4	走 Yes	省 No

		表1	(续)									
Table 1 (Continued)												
基因名称 Gene name	基因 ID Gene ID	编码序列长度 Coding sequence length/bp	长度 Length/ aa	分子质量 Molecular weight/kDa	等电点 Isoelectric point	手性结构个数 Number of EF-hand	N-棕榈酰化 N-palmi- toylation	N-肉豆蔻酰化 N-myris- toylation				
AvCDPK53	>i1_LQ_K_c60909/f1p15/1885	1617	538	60.73	9.13	4	是 Yes	是 Yes				
AvCDPK54	>i2_HQ_K_c23266/f2p3/2495	1068	355	40.55	6.82	4	否 No	否 No				
AvCDPK55	>i2_LQ_K_c31074/f1p2/2373	1677	558	63.20	9.06	4	是 Yes	是 Yes				
AvCDPK56	>i2_HQ_K_c11612/f6p2/2483	1698	565	63.87	9.08	4	是 Yes	否 No				
AvCDPK57	>i2_HQ_K_c3785/f3p3/2376	1683	560	63.53	9.08	4	是 Yes	是 Yes				
AvCDPK58	>i2_HQ_K_c42770/f2p1/2385	1689	562	63.52	9.05	4	是 Yes	是 Yes				
AvCDPK59	>i2_LQ_K_c52187/f1p3/2041	1716	571	64.95	9.00	3	是 Yes	是 Yes				
AvCDPK60	>i3_HQ_K_c29347/f2p0/3369	1068	355	40.49	6.62	4	否 No	否 No				
AvCDPK61	>i3_LQ_K_c22929/f1p0/3823	1158	385	44.50	6.84	3	是 Yes	否 No				
AvCDPK62	>i2_HQ_K_c2006/f5p3/2405	1677	558	63.12	9.02	3	是 Yes	是 Yes				
AvCDPK63	>i2_HQ_K_c170830/f3p1/2097	1599	532	59.36	5.75	3	是 Yes	否 No				

图 1 对萼猕猴桃和拟南芥 CDPK 蛋白的系统进化分析 Fig. 1 Phylogenetic tree analysis of CDPK proteins between Actinidia valvata (Av) and Arabidopsis thaliana (At)

息调控植物体的生理变化,广泛参与植物的生长发育和形态构建^[4]。为了明确*AvCDPK*家族基因在猕猴桃不同组织(茎、叶、叶柄、花梗、萼片和花瓣)中的表达水平,根据系统进化树和motif分析结果,从每

个亚家族中分别挑选4个成员共计16个基因,进行 qRT-PCR检测(图4)。结果表明,AvCDPK11在叶片 中高表达,而AvCDPK29、41和63表达量较低; AvCDPK43在叶柄中高表达,但在萼片和花瓣中表

图 3 对萼猕猴桃 CDPK 蛋白 motif 分布 Fig. 3 Motif distribution of CDPK proteins in Actinidia valvata

达量较低;AvCDPK36在花梗中高表达,但在萼片和花瓣中表达量较低,暗示着不同的AvCDPK基因在对萼猕猴桃的生长发育过程中扮演着不同角色。

2.5 AvCDPK基因家族在盐胁迫和淹水胁迫下的 表达

植物受到非生物胁迫时,细胞内部的Ca²⁺离子 浓度发生变化,CDPK基因感受到浓度变化的信号, 转录表达出特定蛋白质,作用于下游基因,参与植物 的抗逆响应过程[27]。KR5猕猴桃作为潜在的抗性砧 木资源,具有很强的耐涝性和耐盐性[22-24]。为了明确 KR5猕猴桃AvCDPK基因对盐胁迫和淹水胁迫的响 应,笔者在本研究中分析了63个AvCDPK基因在2 种胁迫下的表达情况(图5~图6)。结果表明,AvCDPK 基因响应盐害和淹水胁迫,且不同AvCDPK基因有 着不同的表达模式。在盐胁迫下,AvCDPK6和49 在处理7d时表达量最高,AvCDPK11和45在处理 0.5 d时表达量达到顶峰, AvCDPK 28 和 44 在处理1 d 时表达量达到峰值(图 5-B)。此外, AvCDPK21、31 和38在盐胁迫下表达量持续降低,表明AvCDPK基 因可能具有负反馈调节作用。在淹水胁迫下AvCD-PK表达模式与盐胁迫类似。AvCDPK36和41在淹 水胁迫处理下显著高表达,AvCDPK44在处理7d时 表达量达到峰值,AvCDPK45在处理3d表达量最

高。AvCDPK46和48在处理3、7、11 d时显著高表达,但在处理7 d时表达低于其他处理时期。淹水胁迫下同样存在负反馈调节基因,例如AvCDPK28、30和31在胁迫条件下表达量下调(5倍以上)(图6-B)。以上结果表明,不同的AvCDPK基因家族成员对2种胁迫的响应不同,预示着成员间在参与逆境适应性方面的功能差异。相同基因在不同胁迫中存在相似的表达模式。AvCDPK44、49和51在盐害和淹水胁迫下表达量均表现为先升高后降低,最后又升高的表达模式。AvCDPK30和31在2种胁迫下表达量均下调。以上结果表明,同一基因可能在不同胁迫中扮演着相似的角色。

3 讨 论

3.1 对萼猕猴桃 CDPK 基因家族的鉴定与结构分析

CDPK基因在植物的生长发育和响应生物、非 生物胁迫的过程中均发挥着重要作用,已在多个物 种中被鉴定和研究^[4,7,15,27]。在本研究中,基于KR5 猕猴桃转录组数据,共鉴定出63个AvCDPK基因, 并通过生物信息学分析明确了AvCDPK基因家族成 员的氨基酸、分子质量、等电点、手性结构和酰化位 点等信息。通过与拟南芥的34个CDPK基因家族

A. 盐胁迫(质量分数 0.6% NaCl)条件下根中 AvCDPK 基因在 0、0.5、1、3、5、7 d 的表达热图; B. qRT-PCR 检测在根中高表达的 AvCDPK 基因。每个值 3 次生物重复和 3 次技术重复的平均值±标准差。不同小写字母表示在 p < 0.05 水平上差异显著。下同。

A. Heatmap of AvCDPK genes in roots under salt stress (0.6% NaCl) at 0, 0.5, 1, 3, 5 and 7 d generated by TBtools software; B. Relative expression of selected AvCDPKs in roots by qRT-PCR. Each value indicates the means \pm standard deviation of three biological replicates and three technical replicates. Different small letters indicates significant differences at the 0.05 level. The same below.

图 5 AvCDPK 基因家族成员在盐胁迫下的表达 Fig. 5 Relative expression of AvCDPK family members under salt stress

图 5 (续) Fig. 5 (Continued)

成员蛋白构建系统进化树,将63个AvCDPK基因家族成员蛋白分为4个亚家族,这与葡萄^[10],梨^[12]和黄瓜^[28]中的研究结论一致,并依次将AvCDPK基因家族成员命名为AvCDPK1~AvCDPK63。不同物种的CDPK基因数量有较大差异。拟南芥中有34个^[9],水稻中有31个^[13],马铃薯中有21个^[6],甜瓜中有18个^[29]。KR5猕猴桃AvCDPK基因数量为63个,均大于上述物种,可能原因是KR5猕猴桃为六倍体,较二倍体植物有着更为复杂的基因组,反映在转录组水平上基因数目也更多。

在之前的研究中发现,大多数 CDPK 基因家族 成员蛋白在 N-末端具有棕榈酰化位点和豆蔻酰化 位点,豆蔻酰化位点和靶细胞膜形成松散结合,这一 过程一般不可逆;棕榈酰化位点则可以稳定与细胞 膜锚定结合,这一过程可逆^[30]。在对萼猕猴桃中,52 个 AvCDPK基因家族成员蛋白含有棕榈酰化位点, 15个 AvCDPK基因家族成员蛋白含有肉豆蔻酰化 位点,11个 AvCDPK基因家族成员蛋白既没有棕榈 酰化位点也没有肉豆蔻酰化位点,与对葡萄、甜瓜的 研究结果一致^[10,29]。研究还发现,KR5猕猴桃中没 有单独含有的肉豆蔻酰化位点的成员,这与黄瓜中 的研究结果类似^[28]。结构域分析发现,所有的 AvCDPK基因家族成员蛋白都具有4个典型结构 域,其中部分 AvCDPK基因家族成员蛋白具有一些 特殊的结构。Kdo全称是3-脱氧-D-甘露-2-辛酮糖 酸,在细菌和多种植物的细胞壁中被发现,通常作为 识别侵入病原微生物的潜在靶标^[31]。63个 AvCDPK 基因家族成员蛋白中,有29个含有Kdo结构域,表 明这部分成员可能在对萼猕猴桃抵御生物胁迫方面 发挥作用。

3.2 AvCDPK基因在不同组织及非生物胁迫下的表达

CDPK基因编码的蛋白质可以感受Ca²⁺离子浓度的变化并与相应的靶细胞发生特异性结合,在植物生长发育及形态构建等方面发挥关键作用^[27]。本

研究发现,AvCDPK43、57和61在叶柄中的表达量显著高于其他组织,预示着这些基因可能参与叶片的生长发育。对萼猕猴桃基因型KR5已被证明具有较强的耐盐性和耐涝性^[22-24],在盐胁迫下大部分AvCDPK基因表达量均发生了明显变化。拟南芥

图 6 AvCDPK 基因家族成员在淹水胁迫下的表达 Fig. 6 Relative expression of AvCDPK family members under waterlogging stress

AtCDPK4和11响应盐胁迫处理,葡萄VpCDPK16与 AtCDPK4 和 11 类似, 而 AtCDPK4 和 11 可以磷酸化 ABA应答转录因子,在种子萌发和幼苗生长中降低 对盐胁迫的耐受性, VpCDPK16也存在相似的表达, 表明 VpCDPK16 可能发挥类似的作用[10, 32-33]。在本 研究中,AvCDPK10和11在系统发育树中与AtCD-PK4和11聚在一起,而AvCDPK10和11在盐胁迫下 诱导表达,表明AvCDPK10和11在对萼猕猴桃中可 能发挥相似的作用。猕猴桃属植物根系为肉质根, 对水分胁迫敏感。在淹水胁迫过程中,部分AvCD-PK基因家族成员的表达量显著上调,而AvCD-PK28、30和31的表达量显著下调,表明不同成员可 能在对萼猕猴桃对淹水胁迫的适应性方面发挥着不 同作用。黄瓜CsCDPK5受淹水胁迫诱导表达,并参 与黄瓜下胚轴不定根的形成,进而增强对淹水胁迫 的适应性[19]。笔者在本研究中发现,对萼猕猴桃淹 水胁迫后期也有不定根的发生,表明受淹水胁迫诱 导表达的AvCDPK可能参与对萼猕猴桃不定根的形 成。同时,在本研究中发现在盐胁迫和淹水胁迫下, AvCDPK49显著诱导表达,AvCDPK30和31显著抑 制表达,表明这些基因在对萼猕猴桃的环境适应性 方面发挥着重要作用,可以作为后续研究重点,进行 基因功能的验证。

4 结 论

CDPK基因编码的蛋白质作为Ca²⁺感受器,在 植物的生长发育及生物和非生物胁迫响应过程中起 重要调节作用。笔者基于KR5猕猴桃全长转录组 数据,共鉴定出63个AvCDPK基因,并通过生物信 息学分析,明确了63个AvCDPK基因家族成员的基 本信息,包括进化关系、结构域及酰化位点等,初步 获得部分参与盐害和淹水胁迫响应的成员,为下一 步解析这些响应基因的功能奠定了基础。

参考文献 References:

- [1] VALMONTE G R, ARTHUR K, HIGGINS C M, MACDIAR-MID R M. Calcium-dependent protein kinases in plants: evolution, expression and function[J]. Plant and Cell Physiology, 2014,55(3):551-569.
- [2] 王娇娇,韩胜芳,李小娟,谷俊涛,路文静,肖凯.钙依赖蛋白激酶(CDPKs)介导植物信号转导的分子基础[J].草业学报, 2009,18(3):241-250.

WANG Jiaojiao, HAN Shengfang, LI Xiaojuan, GU Juntao, LU Wenjing, XIAO Kai. Molecular basis of signal transduction mediated by calcium-dependent protein kinases (CDPKs) in plants [J]. Acta Prataculturae Siniva, 2009, 18(3):241-250.

- [3] MCAINSH M R, PITTMAN J K. Shaping the calcium signature:tansley review[J]. New Phytologist, 2009, 181(2):275-294.
- [4] 姜珊珊,张丹,孔祥培,周严,李德全.植物中的钙依赖蛋白激酶(CDPK)的结构特征和功能研究进展[J].生物技术通报,2013,29(6):12-19.
 JIANG Shanshan,ZHANG Dan,KONG Xiangpei,ZHOU Yan,

LI Dequan. Research progress of structural characteristics and functions of calcium-dependent protein kinases in plants[J]. Bio-technology Bulletin, 2013, 29(6):12-19.

- [5] CHENG S H, WILLMANN M R, CHEN H C, SHEEN J. Calcium signaling through protein kinases. The *Arabidopsis* calcium dependent protein kinase gene family[J]. Plant Physiology, 2002,129(2):469-485.
- [6] KLIMECKA M, MUSZYŃSKA G. Structure and functions of plant calcium-dependent protein kinases[J]. Acta Biochimica Polonica, 2007, 54(2):219-233.
- HARMON A C, GRIBSKOV M, GUBRIUM E, HARPER J F. The CDPK superfamily of protein kinases: research review[J]. New Phytologist, 2001, 151(1): 175-183.
- [8] HARMON A C, GRIBSKOV M, HARPER J F. CDPKs-a kinase for every Ca²⁺ signal?[J]. Trends in Plant Science, 2000, 5(4): 154-159.
- [9] HRABAK E M, CHAN C W M, GRIBSKOV M, HARPER J F, CHOI J H, HALFORD N, KUDLA J, LUAN S, NIMMO H G, SUSSMAN M R, THOMAS M, WALKER-SIMMONS K, ZHU J K, HARMMON A C. The *Arabidopsis* CDPK-SnRK superfamily of protein kinases[J]. Plant Physiology, 2003, 132(2): 666-680.
- [10] ZHANG K, HAN Y T, ZHAO F L, HU Y, GAO Y R, MA Y F, ZHENG Y, WANG Y J, WEN Y Q. Genome-wide identification and expression analysis of the CDPK gene family in grape, *Vitis* spp.[J]. BMC Plant Biology, 2015, 15(1):164.
- [11] ZHANG M, LIU Y, HE Q, HE Q, CHAI M N, HUANG Y M, CHEN F Q, WANG X M, LIU Y Q, CAI H Y, QIN Y. Genomewide investigation of calcium- dependent protein kinase gene family in pineapple: evolution and expression profiles during de-

velopment and stress[J]. BMC Genomics, 2020, 21(1):72.

- [12] 许园园,李晓刚,李慧,蔺经,常有宏.梨 CDPK 基因家族全基 因组序列鉴定分析[J]. 江苏农业学报,2015,31(3):659-666. XU Yuanyuan, LI Xiaogang, LI Hui, LIN Jing, CHANG Youhong. Identification of calcium- dependent protein kinase (CDPK) gene family in pear (*Pyrus bretschneideri* Rehd.)[J]. Jiangsu Journal of Agricultural Sciences,2015,31(3):659-666.
- [13] RAY S, AGARWAL P, ARORA R, KAPPOR S, TYAGI A K. Expression analysis of calcium- dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (*Oryza sativa* L. ssp. *indica*)[J]. Molecular Genetics and Genomics, 2007, 278(5):493-505.
- [14] ZHAO R, SUN H L, MEI C, WANG X J, YAN L, LIU R, ZHANG X F. The *Arabidopsis* Ca²⁺- dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post- germination growth[J]. New Phytologist, 2011,192(1):61-73.
- [15] ZHOU L M, LAN W Z, JIANG Y Q, FANG W, LUAN S. A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth[J]. Molecular Plant, 2014,7(2):369-376.
- [16] LIU D, LI S, WANG L, LI Q, CUI Y C, DAI X D, ZHAO Z Z, CHEN C, LI J X, LIU Z L. Cloning and expression analysis of *SiCDPK4*, a gene related to heterosis in foxtail millet[(*Setaria italica* (L.) P. Beauv.)][J]. Journal of Plant Growth Regulation, 2019,38(2):513-522.
- [17] CIEŚLA A, MITUŁA F, MISZTAL L, OLGA F S, JANICKA S, TAJDEL-ZIELINSKA M, MARCZAK M, JANICKI M, LUD-WIKOW A, SADOWSKI J. A role for barley calcium- dependent protein kinase CPK2a in the response to drought[J]. Frontiers in Plant Science, 2016, 7:1550-1554.
- [18] ZOU J J, WEI F J, WANG C, WU J J, RATNASEKERA D, LIU W X, WU W H. *Arabidopsis* calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca²⁺ - mediated stomatal regulation in response to drought stress[J]. Plant Physiology, 2010, 154(3): 1232-1243.
- [19] 许学文,季晶,陆璐,齐晓花,陈学好.黄瓜钙依赖性蛋白激酶 基因 CsCDPK5 的克隆及响应淹水胁迫的表达分析[J]. 园艺 学报,2016,43(4):704-714.
 XU Xuewen, JI Jing, LU Lu, QI Xiaohua, CHEN Xuehao. Cloning and expression analysis of Cucumis sativus calcium-dependent protein kinase 5 gene (CsCDPK5) under waterlogging stress
- [J]. Acta Horticulturae Sinica, 2016,43 (4):704-714.
 [20] LIU H, CHE Z, ZENG X, ZHOU X Q, SITOE H M. Genome-wide analysis of calcium-dependent protein kinases and their expression patterns in response to herbivore and wounding stresses in soybean[J]. Functional & Integrative Genomics, 2016, 16(5):
- [21] 张计育,莫正海,黄胜男,郭忠仁.21世纪以来世界猕猴桃产 业发展以及中国猕猴桃贸易与国际竞争力分析[J],中国农学

481-493.

通报,2014,30(23):48-55.

ZHANG Jiyu, MO Zhenghai, HUANG Shengnan, GUO Zhongren. Development of kiwifruit industry in the world and analysis of trade and international competitiveness in China entering 21st century[J]. Chinese Agricultural Science Bulletin, 2014, 30 (23): 48-55.

- [22] LI Z, ZHONG Y P, BAI D, LIN M M, QI X J, FANG J B. Comparative analysis of physiological traits of three *Actinidia valvata* Dunn genotypes during waterlogging and post-waterlogging recovery[J]. Horticulture, Environment, and Biotechnology, 2020,61(5):825-836.
- [23] 白丹凤,李志,齐秀娟,陈锦永,顾红,黄武权,任建杰,钟云鹏, 方金豹.4种基因型猕猴桃对淹水胁迫的生理响应及耐涝性 评价[J].果树学报,2019,36(2):163-173.

BAI Danfeng, LI Zhi, QI Xiujuan, CHEN Jinyong, GU Hong, HUANG Wuquan, REN Jianjie, ZHONG Yunpeng, FANG Jinbao. Physiological responses and tolerance evaluation of four species of *Actinidia* to waterlogging stress[J]. Journal of Fruit Science, 2019, 36 (2):163-173.

- [24] ABID M, ZHANG Y J, LI Z, BAI D F, ZHONH Y P, FANG J B. Effect of Salt stress on growth, physiological and biochemical characters of four kiwifruit genotypes[J]. Scientia Horticulturae, 2020, 271:109473.
- [25] KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
- [26] MATSCHI S, WERNER S, SCHULZE W X, LEGEN J L, HIL-GER H H, ROMEIS T. Function of calcium-dependent protein kinase CPK28 of *Arabidopsis thaliana* in plant stem elongation and vascular development[J]. The Plant Journal, 2013, 73(6): 883-896.
- [27] 武志刚,武舒佳,王迎春,郑琳琳. 植物中钙依赖蛋白激酶 (CDPK)的研究进展[J]. 草业学报,2018,27(1):204-214.
 WU Zhigang, WU Shujia, WANG Yingchun, ZHENG Linlin.

والمعربين العمرين التعريب التعريب التعريب

Advances in studies of calcium- dependent protein kinase (CDOK) in plants[J]. Acta Prataculturae Sinica, 2018, 27 (1): 204-214.

- [28] XU X, LIU M, LU L, QU W Q. Genome-wide analysis and expression of the calcium-dependent protein kinase gene family in cucumber[J]. Molecular Genetics and Genomics, 2015, 290(4): 1403-1414.
- [29] ZHANG H, WEI C, YANG X Z, CHEN H J, YANG Y C, MO Y L, LI H, ZHANG Y, MA J X, YANG J Q, ZHANG X. Genomewide identification and expression analysis of calcium-dependent protein kinase and its related kinase gene families in melon (*Cucumis melo* L.)[J]. PLoS One, 2017, 12(4):e0176352.
- [30] DAMMANN C, ICHIDA A, HONG B, ROMANOWSKY S M, HRABAK E M, HARMON A C, PICKARD B G, HARPER J. Subcellular targeting of nine calcium-dependent protein kinase isoforms from *Arabidopsis*[J]. Plant Physiology, 2003, 132(4): 1840-1848.
- [31] 庄丽琴,邓好,曾铮,楼琦欣,杨友.3-脱氧-D-甘露-2-辛酮糖酸 寡糖的合成研究进展[J]. 药学进展,2020,44(7):521-534.
 ZHUANG Liqin, DENG Yu, ZENG Zheng, LOU Qixin, YANG You. Advances in research on the synthesis of 3-Deoxy-D-manno-2-octulosonic acid oligosaccharides[J]. Progress in Pharmaceutical Sciences,2020,44(7):521-534.
- [32] URAO T, KATAGIRI T, MIZOGUCHI T, YAMAGUCHI-SHI-NOZAKI K, HAYASHIDA N, SHINOZAKI K. Two genes that encode Ca²⁺-dependent protein kinases are induced by drought and high-salt stresses in *Arabidopsis thaliana*[J]. Molecular and General Genetics, 1994, 244(4): 331-340.
- [33] ZHU S Y, YU X C, WANG X J, ZHAO R, LI Y, FAN R C, SHANG Y, DU S Y, WANG X F, WU F Q, XU Y H, ZHANG X Y, ZHANG D P. Two calcium- dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in *Arabidopsis*[J]. The Plant Cell, 2007, 19(10): 3019-3036.

欢迎订阅2022年《果农之友》

全彩印刷科普期刊,融媒体先进单位。更直观、更逼真、 更生动、更丰富!选发全新实用技术,荟萃果业科技信息,传 播果业成功范例,引导果农发家致富。曾获河南省一级科普 期刊、河南省自然科学期刊二十佳提名期刊、全国农业优秀 期刊等荣誉称号,连续多年入选河南省农家书屋重点出版物 推荐目录(最多时年增加发行量30万册)。被中国知网、万 方数据、维普资讯等收录。月刊,大16开,56页码,每月1日 出版,每期定价4元,全年48元,邮发代号:36-225。全国各 地邮局均可订阅,也可随时汇款至编辑部订阅。 欢迎订阅!欢迎投稿!欢迎刊登广告!

电话:0371-65330925 65330949 E-mail:guonongzhiyou@caas.cn 网址:www.guonongzhiyou.cn 地址:河南省郑州市未来路南端 郑州果树研究所

邮编:450009

